
Pontifícia Universidade Católica do Paraná
Programa de Pós-Graduação em Informática

Machine Learning-based Integral

Defense-in-Depth to Provide Security in Industrial

Control Systems

Paulo Roberto de Oliveira

Advisor

Altair Olivo Santin

Co-Advisor

Eduardo Kugler Viegas

PUCPR

Curitiba
2023

Pontifícia Universidade Católica do Paraná
Programa de Pós-Graduação em Informática

Machine Learning-based Integral

Defense-in-Depth to Provide Security in Industrial

Control Systems

Paulo Roberto de Oliveira

Thesis presented to the Programa de

Pós-Graduação em Informática as a partial

requirement for the degree of Doctor in

Informatics.

Major Field: Computer Science

Supervisor: Altair Olivo Santin

Co-supervisor: Eduardo Kugler Viegas

Curitiba
2023

Dados da Catalogação na Publicação
Pontifícia Universidade Católica do Paraná

Sistema Integrado de Bibliotecas – SIBI/PUCPR
Biblioteca Central

Sônia Maria Magalhães da Silva – CRB 9/1191

Oliveira, Paulo Roberto de
O48m Machine learning-based integral defense-in-depth to provide security in
2023 industrial control systems / Paulo Roberto de Oliveira ; advisor: Altair Olivo Santin ;

co-advisor: Eduardo Kugler Viegas. – 2023
 78 f. ; il. : 30 cm

 Tese (doutorado) – Pontifícia Universidade Católica do Paraná, Curitiba, 2023
 Bibliografia: f. 72-78

 1. Sistemas de detecção de intrusão (Segurança do computador). 2. Sistemas
de controle supervisório. 3. Aprendizado do computador. 4. Informática. I. Santin,
Altair Olivo. II. Viegas, Eduardo Kugler. III. Pontifícia Universidade Católica do
Paraná. Programa de Pós-Graduação em Informática. IV. Título.

 CDD. 20. ed. – 004

Pontifícia Universidade Católica do Paraná
Escola Politécnica
Programa de Pós-Graduação em Informática

Curitiba, 06 de fevereiro de 2024.

08-2024

DECLARAÇÃO

Declaro para os devidos fins, que PAULO ROBERTO DE OLIVEIRA
defendeu a tese de Doutorado intitulada “Machine Learning-based Integral
Defense-in-Depth to Provide Security in Industrial Control Systems”, na

área de concentração Ciência da Computação no dia 07 de dezembro de 2023,

no qual foi aprovado.

Declaro ainda, que foram feitas todas as alterações solicitadas pela

Banca Examinadora, cumprindo todas as normas de formatação definidas pelo

Programa.

Por ser verdade firmo a presente declaração.

Prof. Dr. Emerson Cabrera Paraiso

Coordenador do Programa de Pós-Graduação em Informática

Rua Imaculada Conceição,1155 Prado Velho CEP 80215-901 Curitiba Paraná Brasil
Fone: (41) 3271-1669 e-mail: secretaria@ppgia.pucpr.br

I dedicate this work to my family for unconditional support.

Success is the sum of small efforts repeated day in and day out. - Robert Collier

Abstract

One of the recommended techniques for protecting Supervisory Control and
Data Acquisition (SCADA) systems is to develop a Defense in Depth (DiD)
security mechanism for Industrial Control System (ICS). However, in the case
of a vulnerability existing in the DiD, it may be possible for an attacker to gain
control of diverse security mechanisms in the DiD layers and control the system
completely. An improved implementation of DiD using the Service Function
Chaining (SFC) is presented in this thesis. Using Machine Learning (ML), SFC
flows are used to classify and route the network traffic through DiD dynamically.
This proposal adopts the diversity of security mechanisms in DiD layers. Since
SFC routing flows are inaccessible to an attacker and diversity is adopted, we
assume that the attacker cannot control at least one security mechanism in each
DiD layer. The DiD layers use the Network Intrusion Detection System (NIDS)
and the Deep Packet Inspection (DPI) as security mechanisms. The Security
Monitoring Systems (SMS), a machine learning-based anomaly-based detection
system, validates the classifications of the NIDS and the DPI. The SMS is 28.6%
more reliable in classifying traffic, outperforming security tools available in the
literature.

Key-words: Defense-in-Depth; Industrial Control Systems; Intrusion Detection
System; Machine Learning Classification; Machine Learning-Based Anomaly
Detection; Operation Technology; Service Function Chain; Supervisory Control
and Data Acquisition

i

Resumo

Uma das técnicas recomendadas para proteger os sistemas SCADA (Supervisory
Control and Data Acquisition, Controle de Supervisão e Aquisição de Dados)
é desenvolver um mecanismo de segurança DiD (Defense-in-Depth, Defesa em
Profundidade) para os ICS (Industrial Control Systems, Sistemas de Controle
Industrial). No entanto, no caso de uma vulnerabilidade existente no DiD,
pode ser possível que um invasor obtenha o controle de diversos mecanismos
de segurança nas camadas do DiD e controle completamente o sistema. Nesta
tese, é apresentada uma implementação aprimorada do DiD usando a cadeia
de funções de serviço (SFC). Usando o aprendizado de máquina, os fluxos
de SFC são usados para classificar e rotear o tráfego de rede por meio do DiD
dinamicamente. Essa proposta adota a diversidade de mecanismos de segurança
nas camadas de DiD. Como os fluxos de roteamento SFC são inacessíveis a
um invasor e a diversidade é adotada, presumimos que o invasor não pode
controlar pelo menos um mecanismo de segurança em cada camada DiD. As
camadas DiD usam o sistema de detecção de intrusão de rede (NIDS) e a inspeção
profunda de pacotes (DPI) como mecanismos de segurança. O Sistema de
Monitoramento de Segurança (SMS), um sistema de detecção de anomalias
baseado em aprendizado de máquina, valida as classificações do NIDS e da
DPI. O SMS é 28,6% mais confiável na classificação do tráfego, superando as
ferramentas de segurança disponíveis na literatura.

Palavras-chave: Defesa em Profundidade; Sistemas de Controle Industrial; Sis-
tema de Detecção de Intrusão; Classificação de Aprendizado de Máquina; De-
tecção de Anomalias Baseada em Aprendizado de Máquina; Tecnologia de Op-
eração; Cadeia de Funções de Serviço; Controle de Supervisão e Aquisição de
Dados

ii

Acknowledgements

First of all, I would like to thank God for the opportunity to complete this work.
I thank my advisors Altair Olivo Santin and Eduardo Kugler Viegas for all

their support and teachings during this period.
To the colleagues of the SecPLab group for all the exchange of knowledge

during this journey, as well as the understanding of various issues related to my
work.

To the professors of the Graduate Program in Computer Science (PPGIa), for
so much dedication and work for the benefit of science.

To my family, for all the support during this time, my wife, my son, my
parents and my siblings.

To CAPES for helping me to study.
And not later, I would like to thank my colleague Valéria for her great help

in this last part of the journey.

iii

Contents

List of Figures vii

List of Tables viii

List of Algorithms ix

List of Acronyms x

1 Introduction 1

1.1 Contextualization . 1
1.2 Motivation . 3
1.3 Hypothesis . 4
1.4 Objectives . 4

1.4.1 Specific Objectives . 4
1.5 Contributions . 4
1.6 Publications . 5
1.7 Organization . 6

2 Background 8

2.1 Industrial Control Systems . 8
2.2 Defense in Depth . 10

2.2.1 Defense in Depth Security Problems 12
2.3 Service Function Chaining and its components 13

2.3.1 Software Defined Network 13
2.3.2 Network Function Virtualization 14
2.3.3 Service Function Chaining 15
2.3.4 Advantages of Using SFC 17

2.4 Machine Learning . 18
2.4.1 Machine Learning Classifiers 19

iv

CONTENTS

2.4.2 Late-Fusion Classification 20
2.4.3 Honeypot . 21

2.5 Chapter Discussion . 21

3 Related Works 23

3.1 SFC as a Framework to Solve Security Problems 23
3.2 SFC in Specific environments . 25
3.3 Proposed architectures . 27
3.4 IDS Security Improvements . 28
3.5 Chapter Discussion . 30

4 ICS Integral Defense in Depth Architecture 32

4.1 Architecture Overview . 33
4.2 Machine Learning-Based Defense in Depth to Provide Security in

ICS Systems . 35
4.2.1 SFC Flow Classifier . 36
4.2.2 Security Monitoring System 37

4.3 Prototype and Result Analysis . 38
4.3.1 VirtualBox (Host machine) 39
4.3.2 Linux Attack Machine . 39
4.3.3 Windows Attack Machine 40
4.3.4 SCADA Client . 41
4.3.5 Security Layer 1 (SMS 1) . 41
4.3.6 Security Layer 2 (SMS 2) . 43
4.3.7 Security Layer 3 . 44
4.3.8 SCADABr . 45
4.3.9 ModbusPal . 45
4.3.10 Honeypot . 46
4.3.11 Floodlight Controller . 46
4.3.12 OpenFlow Switch . 46
4.3.13 NTP (Network Time Protocol) 47
4.3.14 TCPDump . 47
4.3.15 Flowtbag . 47

4.4 Testbed Scenario . 47
4.4.1 Dataset Description . 49

4.5 Chapter Discussion . 50

v

CONTENTS

5 Evaluation 53

5.1 Model Building . 53
5.2 SFC Flow Classifier Models . 54
5.3 Anomaly Host-based Detection Models 58

5.3.1 SysStat Model . 59
5.3.2 Permon Model . 61

5.4 Security Monitoring System Discussion 62
5.5 Intelligent Defense in Depth . 63
5.6 Limitations . 68
5.7 Chapter Discussion . 68

6 Conclusion and Future Works 70

6.1 Future Works . 71

References 72

vi

List of Figures

2.1 The Communication Components of a SCADA System. Adapted
from (LIU, 2022) . 9

2.2 SCADA Communication With a Four-layers DiD Scheme. Adapted
from (COMMISSION et al., 2018) 12

2.3 SFC Schema. Adapted from (CHEN et al., 2019). 16

4.1 Architecture Overview. 34
4.2 Security Solution Overview. 35
4.3 Security Monitoring System Details. 37
4.4 Scenario composed of security tools and anomaly host-based de-

tection. 38
4.5 The Testbed Created in This Work. 48

5.1 SFC Flow Classifier. The proposed scheme proactively selects
the most suitable security mechanisms tailored for the current
network traffic. 55

5.2 MLP Models for IPTables DPI, Snort Linux, Snort Windows. . . . 56
5.3 ROC curve for the MLP created based on IPTables, Snort Win-

dows, and Snort Linux. 59
5.4 Models for SysStat. 60
5.5 ROC curve for the SysStat model with four classifiers. 60
5.6 Models for PerfMon. 61
5.7 ROC curve for the PerfMon model with four classifiers. 62
5.8 ROC curve for the Linux OS model with four classifiers. 67
5.9 ROC curve for the Windows OS model with four classifiers. . . . 67

vii

List of Tables

1.1 Performed Publications During This Work. 6

2.1 Comparison between SDN and NFV Technologies. 15

3.1 The main characteristics of related works. 31

4.1 SysStat metrics. Adapted from (GODARD, 2015) 43
4.2 PerfMon Metrics. Adapted from (PERFMON, 2023) 44
4.3 Tools and attacks . 49
4.4 The list of Flowtbag features. Adapted from (ARNDT, 2023) . . . 51

5.1 Whole System Accuracy. 65
5.2 Elapsed Time (in seconds) for all Classifiers in Linux and Windows. 68

viii

List of Algorithms

1 Intelligent Defense in Depth (Prototype) 64

ix

List of Acronyms

CAPEX Capital Expense

CNN Convolutional Neural Network

CVE Common Vulnerabilities and Exposures

DDoS Distributed Denial of Service

DiD Defense in Depth

DoD Department of Defense

DPI Deep Packet Inspection

DT Decision Tree

FN False Negative

FP False Positive

GB Gradient Boosting

GNB Gaussian Naive Bayes

HIDS Host-based Intrusion Detection System

HMI Human-Machine Interface

ICS Industrial Control System

IDS Intrusion Detection System

IT Information Technology

IPS Intrusion Prevention System

x

LIST OF ALGORITHMS

ML Machine Learning

MLP MultiLayer Perceptron

NIDS Network Intrusion Detection System

NFV Network Function Virtualization

NTP Network Time Protocol

OS Operating System

OT Operation Technology

ONF Open Network Foundation

PCAP Packet Capture

Pentest Penetration Testing

PLC Programmable Logic Controllers

RF Random Forest

ROC Receiver Operator Characteristic

RSP Rendered Service Path

SaaS Software-as-a-Service

SCADA Supervisory Control and Data Acquisition

SDN Software-Defined Network

SF Service Function

SFC Service Function Chaining

SFF Service Function Forwarder

SFP Service Function Path

SMS Security Monitoring Systems

SQL Structured Query Language

xi

LIST OF ALGORITHMS

SSL Secure Socket Layer

TN True Negative

TP True Positive

XSS Cross-Site Script

xii

1
Introduction

1.1 Contextualization

In the cybersecurity domain, Möller et al. (2018) asserts that potential ad-
versaries encompass a wide range of entities, from nations and terrorists to
criminals, hackers, and business competitors. These adversaries are driven by
a variety of motivations, ranging from intelligence gathering and intellectual
property theft to conducting denial-of-service attacks, causing embarrassment,
or simply enjoying having exploited a high-profile target. Understanding the
range of potential adversaries and their underlying motivations is paramount
to understanding the diverse landscape of cybersecurity threats and developing
effective countermeasures.

As we have seen in recent years, a large proportion of computers in Industrial
Control System (ICS) environments have been attacked. In 2022 alone, 21.93%
of ICS computers were attacked with malware (CERT, 2023). These are only the
attacks that were blocked. The real number could be much higher.

Industrial environments are often part of an ICS (TRENDMICRO, 2023). Such
systems are important because they control automated industrial processes,
systems, devices, and networks. Therefore, critical data is carried in an ICS as
the systems receive it from remote sensors used to control important industrial
processes. A Supervisory Control and Data Acquisition (SCADA) system is
typically used to manage an ICS.

ICS are often deployed in organizations that provide essential or even danger-

1

CHAPTER 1. INTRODUCTION

ous services to the public, such as energy supply, and are therefore considered
critical systems. Any failure or malfunction within these systems can result in
environmental harm, substantial financial losses, or even loss of life (GHEO-
RGHE et al., 2006).

One of the most famous cases of ICS attacks was Stuxnet (LANGNER, 2011),
a malware considered to be the most sophisticated at the time, specifically
designed to target the SCADA controlling uranium enrichment centrifuges. This
attack occurred in 2010 at a nuclear power plant in Iran, using malware capable
of reprogramming Programmable Logic Controllers (PLC). Stuxnet exploited
four vulnerabilities in Windows systems, two of which were known and two of
which were unknown at the time.

Another major ICS security issue was caused by the Black Energy tool (HEM-
SLEY; FISHER et al., 2018), which was used to attack a utility company in Ukraine
and was used as a Trojan horse for DDoS attacks, digital espionage, and infor-
mation gathering. One target was the SCADA system, as a specific plug-in was
created for it in the attack tool, which exploited a vulnerability in MS Office.
The attack took place in 2015, and the attackers gained access to the company’s
SCADA network, allowing them to shut down 30 substations and leave many
Ukrainian users without electricity for days.

These two examples of real-world attacks occurred because the third genera-
tion of SCADA began to support Ethernet and TCP/IP architecture as connectiv-
ity capabilities. However, developers were not prepared to address security in
the Operation Technology (OT) environment as they did in the information tech-
nology Information Technology (IT) environment. Therefore, there was room to
start using Intrusion Detection System (IDS) in OT.

In general, SCADA can also physically distribute processing as a strategy to
survive a total loss of control of a specific system location. However, in OT with
ICS, these characteristics require following a standardization such as IEC 62443
(COMMISSION et al., 2018).

IEC 62443 proposes Defense in Depth (DiD), whose goal is to impose multiple
and different defensive barriers (security mechanisms organized in multilayers)
on the path between a possible starting point for an attack (usually the internet)
and its target, commonly a SCADA system (MELL; SHOOK; HARANG, 2016).

The layer-based layout of DiD assumes that if a mechanism is vulnerable in
one layer, the same vulnerability will not occur in another layer. Therefore, if the
arrangement of defensive mechanisms is well constructed, the overall security

2

CHAPTER 1. INTRODUCTION

of DiD remains intact even if a particular mechanism has vulnerabilities in each
layer.

Now suppose that more than one tool is susceptible to vulnerabilities in the
DiD layers. In such a scenario, we can deduce two possible behaviors of an
attacker faced with the DiD security approach. First, the attacker does not want
to attack the vulnerable tool and gives up because easier targets are available.
In contrast, in a second scenario, an attacker may spare no effort to attack the
vulnerable tool in the DiD, targeting the ICS.

In general, the DiD must provide resistance to the attacker to make him give
up. However, if the attacker is highly motivated to break into the ICS target,
he may be able to control at least one defense mechanism in each layer of the
multi-layered security arrangement that complicates the DiD.

Admittedly, the DiD security barrier arrangement imposes resistance on
attackers by requiring more complex work on the part of the attacker. However, it
is important to keep in mind that the essence of the DiD protection scheme has
a significant limitation in that the multi-layered scheme can be compromised
individually and the attacker can reach the SCADA in the ICS. The idea of
making the ICS completely secure by adding layers of security is only valid if
at least one of the DiD layers has no vulnerability, which cannot be guaranteed
and cannot be considered reliable.

1.2 Motivation

As previously mentioned, when attackers encounter layers of security be-
fore reaching their target, there are two possible scenarios. They may either
choose to abandon their efforts and seek out an easier target, or they may persist
in their attempts to escalate through each layer, carefully examining potential
vulnerabilities until they reach the ICS target.

In the latter scenario, attackers may be successful regardless of the time
spent finding vulnerabilities and controlling security layers. To provide high-
level security for systems and networks, the DiD technique depends on several
aspects, including the level of security tool (in an isolated analysis), the best mix
of security tools, the number of employed layers, and the attacker’s profile and
goals. This problem motivated us to propose a novel approach that utilizes the
concepts of DiD as recommended by IEC 62443.

3

CHAPTER 1. INTRODUCTION

1.3 Hypothesis

A DiD security architecture with multi-layered integration and a late-fusion
classification engine makes the Intrusion Detection System (IDS) of ICS more
reliable.

1.4 Objectives

The aim of this thesis was to design and implement an SFC architecture that
can enhance the security level of critical infrastructures, including industrial
control systems. The architecture must be comprehensive to prevent potential
attackers from manipulating security layers such as IDS, Deep Packet Inspec-
tion (DPI), etc. This is accomplished by preventing attackers from controlling
the flows within the SFC-based DiD environment. These flows are managed dy-
namically based on the type of incoming traffic. Machine learning algorithms
determine the optimal path, mitigating potential threats.

1.4.1 Specific Objectives

To achieve the objective of this work, we delineated the following specific
objectives:

• To develop a dataset containing ICS and IT traffic information among
clients, SCADA Server, security tools, and possible attacks against it.

• To develop an Integral Defense in Depth model based on SFC.

• To develop the Security Monitoring Systems (SMS), since it is a key aspect
of this work.

• To integrate the SMSs to the Integral Defense in Depth model.

• To develop a Proof of Concept to demonstrate that the integral Defense in
Depth model, along with the SMS, provides a higher level of security and
represents an interesting choice for protecting critical infrastructures.

1.5 Contributions

The main contributions of this work are the following:

4

CHAPTER 1. INTRODUCTION

• The DiD technique is implemented in an integrated way using an SFC
flow classifier that applies machine learning to dynamically select the most
likely security tool to identify an attack. This aims to prevent an attacker
from controlling a security mechanism in a DiD layer.

• The late-fusion classifier offers a solution that can improve the reliability of
traffic classification. To ensure more accurate decision-making, multiple
layers are utilized to determine whether the traffic is an attack or not. Such
validation is presented in Chapter 5.

Some by-products generated from this work are the following:

• A dataset collecting events classified as attacks by security mechanisms on
various platforms. Its purpose is to model the attacks in a pre-classifier
to provide security isolation through SFC technology implementing the
multilayer DiD. The goal is to prevent attackers from knowing the security
barrier they will face until reaching the ICS.

• A NIDS and Host-based Intrusion Detection System (HIDS) specific to
SCADA systems, implemented through late-fusion classification and em-
bedded in the SMS, which will be discussed later in this thesis.

1.6 Publications

This section presents a list of papers that have been published or are under re-
view, addressing security challenges in ICS environments. The table 1.1 includes
the titles of the publications, the Brazilian Qualis, the places of publication, and
the list of authors.

5

CHAPTER 1. INTRODUCTION

Table 1.1: Performed Publications During This Work.

Title Qualis Conference/Journal Authors

A Dynamic Machine
Learning Scheme for
Reliable Network-Based
Intrusion Detection

A3 The 37th International
Conference on Ad-
vanced Information
Networking and Appli-
cations (AINA-2023)

Eduardo K. Vie-
gas, Everton de
Matos, Paulo R.
de Oliveira, Al-
tair O. Santin

A Dynamic Network-
based Intrusion Detec-
tion Model for Indus-
trial Control Systems

A2 The 22nd International
Conference on Trust, Se-
curity and Privacy in
Computing and Com-
munications (TrustCom
2023)

Paulo R. de
Oliveira, Altair
O. Santin, Pedro
Horchulhack,
Eduardo K.
Viegas, Everton
de Matos

Toward a Reliable
Network-based Intru-
sion Detection Model
for SCADA: a Classifica-
tion with Reject Option
Approach (Under re-

view)

A2 The 39th ACM/SIGAPP
Symposium On Applied
Computing

Paulo R. de
Oliveira, Altair
O. Santin, Pedro
Horchulhack,
Eduardo K.
Viegas, Everton
de Matos

Defense-in-Depth and
Machine Learning-
based Intrusion De-
tection for Industrial
Control Systems (Under

review)

A1 Computer Networks
(Journal)

Paulo R. de
Oliveira, Altair
O. Santin, Pedro
Horchulhack,
Eduardo K.
Viegas, Aldri
Santos

1.7 Organization

The outline of the paper is as follows. Section 2 deals with the background,
while Section 3 reports on related work. Section 4 presents the proposed ma-
chine learning-based defense in depth to provide security in ICS. Section 5
presents prototype and experimental results, and finally, Section 6 concludes

6

CHAPTER 1. INTRODUCTION

and discusses future work.

7

2
Background

This chapter presents the theoretical foundation related to Industrial Con-
trol Systems, Defense in Depth, Software Defined Networks, Network Function
Virtualization, Service Function Chaining, Machine Learning and Honeypot
techniques. These concepts are essential foundations for understanding this
thesis.

2.1 Industrial Control Systems

Industrial Control System (ICS) are integrated architectures used to manage
and control industrial processes and associated infrastructure in sectors such
as manufacturing, energy, and transportation (KAYAN et al., 2022). It inte-
grates hardware, software, and network components to enable their automation
and optimize industrial processes (TRENDMICRO, 2023), including machinery,
sensors, data acquisition, and communication interfaces.

The SCADA system is widely used in ICSs, as it enables the control and
automation of Programmable Logic Controllers (PLC) through an Human-
Machine Interface (HMI), using various protocols such as Modbus, DNP3, and
OPC for seamless communication and data exchange (ALANAZI; MAHMOOD;
CHOWDHURY, 2022). Figure 2.1 presents the main components of SCADA Sys-
tems. Those systems are not full control systems but are the major representative
of ICS hardware and software and operating at the supervisory level (DANEELS;
SALTER, 1999).

8

CHAPTER 2. BACKGROUND

Figure 2.1: The Communication Components of a SCADA System. Adapted
from (LIU, 2022)

In this context, MODBUS plays a crucial role as a widely used communica-
tion protocol in industrial automation and control systems (THOMAS, 2008). It
provides a simple and effective way for devices such as sensors, actuators, and
controllers to exchange data on the same network. With support for both serial
communication and TCP/IP, MODBUS is versatile and facilitates communica-
tion between devices from different manufacturers in SCADA systems.

SCADA systems have several main functions, including local and remote
control of industrial processes, real-time data gathering, monitoring, and pro-
cessing, exchanging data with various devices such as sensors, motors, valves,
and others, and recording events into log files (AUTOMATION, 2018).

Critical infrastructures, such as SCADA systems, are increasingly becoming
targets for potential attackers due to their connection with other networks. ICS
users and developers have noticed a significant increase in cyber-attacks on their
systems (KASPERSKY, 2023).

Attacks on SCADA systems can have physical manifestations in the real
world, as noted by (MILLER; ROWE, 2012). This means that an attack launched
in the virtual environment can have significant physical consequences within an
organization or company. As a result, SCADA systems are highly attractive to

9

CHAPTER 2. BACKGROUND

attackers who seek to interrupt or damage physical devices or services. These
factors have contributed to the increase in attacks on SCADA systems.

Attackers are highly motivated to disrupt ICS systems due to their critical
nature. They may even utilize multiple zero-day vulnerabilities to achieve their
goal, as noted by (SHENG et al., 2023). In practice, attackers analyze their target
ICS infrastructure over extended periods to effectively craft their attacks.

To ensure comprehensive safeguarding of these systems, operators must
implement a range of security solutions, including authentication, authorization,
firewalls, and VPNs. NIDS tools are commonly used to evaluate ICS network
traffic.

Thus, DiD is also one of the techniques proposed to mitigate security prob-
lems in ICS environments, as it can use different tools to compose a strong
and complex security solution (COMMISSION et al., 2018). Therefore, the DiD
concept will be discussed in the next subsection.

2.2 Defense in Depth

Defense in Depth (DiD) is a strategy designed to strengthen the overall
defense by implementing a series of security measures in a cascading fashion
(COMMISSION et al., 2018), (MELL; SHOOK; HARANG, 2016), (SECURITY,
2016).

For network security, DiD is the practice of implementing multiple layers of
defensive barriers between potential attackers and their desired targets. This
approach aims to provide a comprehensive and robust security architecture that
can withstand various types of attacks. (MELL; SHOOK; HARANG, 2016). As
stated by Runnels (2002), A security tool alone cannot be considered foolproof,
as threats can exist within the tools themselves and attackers are constantly
improving their attack methods. Therefore, the DiD technique is proposed as a
means of minimizing such security issues.

In information security, this strategy involves creating layers of barriers to
hinder potential attackers. Each layer is dedicated to a distinct security solution,
including firewalls, traffic monitors, Deep Packet Inspection (DPI), Intrusion
Prevention System (IPS), Intrusion Detection System (IDS), among others.

Runnels (2002) also states that the DiD approach establishes layers of defense
that reinforce each other to reduce vulnerabilities and aid in the detection and

10

CHAPTER 2. BACKGROUND

response to potential attacks. Consequently, when attackers discover and exploit
a vulnerability, they encounter another barrier (layer) and the cycle continues,
deterring unauthorized access attempts.

In essence, DiD functions as a mechanism designed to delay and frustrate
attackers, forcing them to expend more resources and time to breach the system
or successfully achieve their objectives.

In a practical implementation, several questions arise when working with
DiD, such as Is there a single optimal model? How many layers should be built?
Is there a minimum number of layers to use? What are the constraints and who
is responsible for these layers? (RUNNELS, 2002).

The answer to the first question is that there is no single best model, because
the techniques used in each type of attack can be very different. The model pro-
posed by the US Department of Defense (DoD) suggests the use of three broad
layers: people, operations, and technology. On the other hand, commercial
developers model it by focusing on their products, such as antivirus, firewalls,
and others. Other approaches mix the two earlier models, using security tools,
employee training, and physical security.

The answers to the remaining questions depend on the specific environment
in which the mitigation mechanism is deployed (whether it’s a critical envi-
ronment or not), the desired level of security, and the sensitivity of the data in
transit, among other factors. Consequently, there is no one-size-fits-all answer to
these questions, as they should be tailored to the unique security requirements
of each company or organization.

Therefore, certain aspects to consider when building a robust DiD strategy
include (i) the isolation level of each security tool, (ii) the diversity of tools
within a given system/network, and (iii) the interconnection of security layers.
(SECURITY, 2016).

To ensure that DiD is effective, a vulnerability present in one layer cannot
be present in the next layer. Thus, each layer can "compensate" for possible
vulnerabilities in earlier layers. Figure 2.2 shows a four-layer DiD scheme, its
vulnerabilities (small ellipses) and possible exploits (arrows).

DiD finds significant applications within cloud computing application archi-
tectures. For example, in a Software-as-a-Service (SaaS) model, various layers
separate users from the underlying application data (LYONS, 2011). It also plays
a critical role in scenarios involving repositories of sensitive data where strict
access controls are imperative, such as in federal government systems.

11

CHAPTER 2. BACKGROUND

Figure 2.2: SCADA Communication With a Four-layers DiD Scheme. Adapted
from (COMMISSION et al., 2018)

However, like any security technique, DiD comes with its own set of chal-
lenges, which are discussed in the following section.

2.2.1 Defense in Depth Security Problems

The Defense in Depth technique needs refinement to adapt to today’s en-
vironments. According to Gerritz (2018), DiD is not enough because it leaves
a large attack surface that allows attackers to go undetected, leaving compa-
nies/data/people/nations vulnerable. The author also says that this technique
requires an advanced approach that must go beyond prevention layers.

Group et al. (2018) mentions that if an attacker can penetrate a particular vul-
nerability on one host, he is likely to be able to penetrate the same vulnerability
on another host. Therefore, different layers cannot have the same vulnerabilities.

A critical consideration regarding security tools in general is their potential
vulnerabilities that can undermine their proper functionality. For example,
in 2019, a vulnerability was discovered in Iptables that could lead to a buffer
overflow and even the execution of arbitrary code (CVE-2019-11360). Similarly,
there are several Common Vulnerabilities and Exposures (CVEs) associated with
Snort, such as CVE-2020-3299, which could allow an unauthenticated attacker
to bypass HTTP policies configured in the tool. A scenario like the one in the
figure 2.2 with DiD and the tools mentioned could be problematic.

12

CHAPTER 2. BACKGROUND

In this context, if both tools have security issues such as these, they may
operate inefficiently, leaving the system exposed with a significant attack surface.
It is important to note that it took more than a year to update the vulnerabilities
reported in these CVEs. Therefore, additional security methods within the
security architecture would be required to prevent a successful attack even if the
tools have vulnerabilities.

To mitigate these limitations, we propose the use of SFC along with DiD to
provide a high level of security in ICS environments. Therefore, SFC-related
topics are discussed in the following subsections.

2.3 Service Function Chaining and its components

Service Function Chaining (SFC) is built on two leading technologies, NFV
and SDN. These two technologies, along with cloud computing and network
virtualization, promise to reduce CAPEX and operational expenses, increase
network flexibility and scalability, and accelerate time to market for new appli-
cations and services. (NGUYEN et al., 2017).

2.3.1 Software Defined Network

Software-Defined Network (SDN) is defined as a dynamic, manageable, cost-
effective and adaptable architecture that redefines how networks are structured,
managed and adapted, making it ideal for the high-bandwidth, dynamic na-
ture of today’s applications (NETWORKING, 2019). SDN embodies the idea
of decoupling network control and forwarding functions, making network con-
trol programmable and abstracting the infrastructure for network services and
applications.

At its core is a centralized controller with the authority to manage and orches-
trate network behavior. By separating control from the physical infrastructure,
administrators can dynamically shape traffic, optimize resource allocation, and
respond to network events with unprecedented agility.

Controllers are entities that implement the control plane in the SDN model
and can apply, modify, or remove entries in the flows table using the OpenFlow
protocol (FOUNDATION, 2015). They operate in a manner analogous to an
external server that has a global and centralized view of the network, which
includes switches, machines, and all flows traveling in this scenario.

13

CHAPTER 2. BACKGROUND

SDN introduces the concept of programmability, allowing network admin-
istrators to manage network devices, policies, and configurations through soft-
ware interfaces. This programmable nature enables rapid adjustments to net-
work behavior, streamlining service provisioning and facilitating rapid responses
to changing traffic patterns or security threats. With SDN, what was once a com-
plex and time-consuming process becomes streamlined and adaptive.

In a broader perspective, SDN is transforming network equipment and de-
vices from closed, vendor-specific entities to open and versatile systems through
its innovative technology. This shift enables the segregation of control and
data planes, empowering networks to be programmed using open interfaces
(NGUYEN et al., 2017).

The benefits of SDN are many. For example, it simplifies network man-
agement by providing a holistic view of the network and enabling consistent
policy enforcement across the infrastructure. SDN improves network security
by centralizing threat detection and enabling real-time response to potential
breaches. SDN also optimizes network utilization and performance through
dynamic traffic routing.

The flexibility of SDN also paves the way for innovations such as Network
Function Virtualization, where network services traditionally implemented as
dedicated hardware appliances can be abstracted and run as software instances
on generic servers. This consolidation not only reduces costs, but also accelerates
service provisioning and scaling.

2.3.2 Network Function Virtualization

Network Function Virtualization (NFV) can be seen as a complement to the
SDN model (HAN et al., 2015), and the combination of NFV and SDN tends to
increase performance, simplify compatibility between specialized technologies,
and facilitate network maintenance procedures.

While NFV focuses on virtualizing network functions, SDN centralizes net-
work control and enables dynamic network configuration. Together, NFV and
SDN provide a flexible and agile network environment that is well suited for
modern data centers, telecommunications networks, and cloud computing in-
frastructures.

The main motivation of NFV is to migrate the network functions imple-
mented by dedicated hardware performing specific functions (e.g. firewall,

14

CHAPTER 2. BACKGROUND

Table 2.1: Comparison between SDN and NFV Technologies.

SDN x NFV SDN NFV

Objective Separation of control and
data, centralization of control,
and programmability of net-
work

Relocation of network func-
tions from dedicated appli-
ances to generic servers

Target Loca-
tion

Campus, data center/cloud Service provider network

Target De-
vices

Commodity servers and
switches

Commodity servers and
switches

Formalization
Open Network Foundation
(ONF)

ETSI NFV Working Group

Protocols OpenFlow None

proxy, gateway, load balancer, etc.) to generic devices (common x86 architec-
tures). This feature allows virtualized network functions to be installed on any
node in the network, making the scenario fully dynamic and responsive to the
needs of the service consumer and extending the capabilities of the service
provider.

In other words, network functions previously realized in expensive hardware
platforms are now implemented as software appliances placed on low-cost com-
modity hardware or running in the cloud computing environment (NGUYEN
et al., 2017).

A comparison between the concepts of SDN and NFV is shown in table 2.1.
Note that the goals of both techniques are fundamental concepts of SFC, which
is described in the next section.

Recently, the SFC technique has been presented in scientific works as a mech-
anism to improve the security level of applications in different computing envi-
ronments. We assume that Defense in Depth can also be improved if it is built
and deployed using SFC properties. Therefore, it is important to know the basic
concepts of the technique as well as its components.

2.3.3 Service Function Chaining

Currently, provisioning services in computer networks requires manual con-
figuration and instantiation of network functions, which requires human inter-
vention and makes the network vulnerable to errors. When there are many

15

CHAPTER 2. BACKGROUND

Figure 2.3: SFC Schema. Adapted from (CHEN et al., 2019).

devices to be configured in a given network, a large amount of work is required
and the probability of error increases. Therefore, the SFC technique uses the
best of SDN and NFV technologies to facilitate the work of configuring net-
works/devices through a central controller, as well as virtualizing services and
machines. Some of the main components present in this solution are described
below, according to RFC 7665 (HALPERN; PIGNATARO, 2015).

To take advantage of the dynamic flow change functionality, some of the
key components must be present in the environment, such as Service Function
(SF), SFC, Service Function Forwarder (SFF), Service Function Path (SFP), flow
classifier, and Rendered Service Path (RSP). This scheme is shown in Figure 2.3.

The SF is a function responsible for performing a specific task on received
packets. Such a function can operate in multiple layers of a protocol, such as the
ISO/OSI layers. Some examples of SFs are firewalls, application acceleration,
DPI, and load balancing.

A SFC is a structured sequence of abstract service functions and specific
ordering constraints. These constraints define the precise order in which the
functions must be applied to packets based on their classification. The first
order of SFs must be satisfied because this technique provides the flexibility to
change the order of the chain in real time.

SFF delivers the traffic to one or more service functions according to existing
traffic forwarding policies. Another task that can be performed by SFFs is to
deliver traffic to classifiers, if needed and supported, that transport traffic to
another SFF.

The SFP is the specification of where the packets assigned to an SFP must
go, i.e., after the classification, the SFC is instantiated by selecting instances

16

CHAPTER 2. BACKGROUND

of the constituent SFs, that result in a Service Function Path. In addition, the
SFP supplies the notion of exactly which SFF/SFs the packet will visit when it
traverses the network.

The Flow Classifier is the element that performs the matching traffic flows
against policy for subsequent application of the service functions. For instance,
in Figure 2.3, the SFC flow classifier forwarded the traffic throughout the IDS
and Firewall by attack inspection in the path identified as SPF2.

The Rendered Service Path is related to the current sequence of SFFs and SFs
visited by the packet until reaching the current component.

Additional SFC components can be used in specific situations. They are
described in RFC 7665 (HALPERN; PIGNATARO, 2015). Another important
aspect of NFV and SDN is that both technologies have been defined as key
drivers in the design of 5G network architecture (ALLIANCE, 2015).

2.3.4 Advantages of Using SFC

It is especially important to highlight the choice we made for the SFC tech-
nique to increase the security level in industrial environments. Thus, the main
contributions of using SFC are listed below:

• Topological independence of the network: SFC combines the best of
SDN and NFV. Together, they provide a flexible, topology-agnostic envi-
ronment.

• Different paths with a unique topology: Unlike DiD, SFC can use a
unique topology and supply different paths for different applications. In
this way, it is possible to have several levels of security by making use of
the combination of Service Functions.

• Specific protection layers: Using SFC, it is possible to adjust intermediate
security layers in a more specific way because it will not be seen by attack-
ers, becoming harder for them to control the path (i.e., scale privileges).
But we know that the attack surface can be larger, given there are larger
network services infrastructures (YOON et al., 2017).

• Machine Learning: It is possible to use and integrate ML techniques into
security solutions.

Another important technique used in this work is machine learning. A set of
tools was used to evaluate the security level of the solutions and to generate the
dataset and the testbed. Therefore, the primary concepts of machine learning
are explained in the following section.

17

CHAPTER 2. BACKGROUND

2.4 Machine Learning

The purpose of machine learning is to develop algorithms and models that
enable computers to learn from data and make predictions or take actions with-
out being explicitly programmed. The goal is to enable machines to automati-
cally analyze and interpret patterns, extract meaningful insights, and make ac-
curate decisions or predictions based on the available data (DOMINGOS, 2012).
Machine learning aims to enhance the performance and capabilities of computer
systems by enabling them to learn, adapt, and improve their performance over
time through experience.

In the machine learning process, the availability and quality of the dataset
play a crucial role. Particularly in supervised machine learning, the dataset
consists of a collection of labeled examples or instances that are used to train and
evaluate machine learning models. It serves as the foundation for the learning
process, providing the necessary information for the algorithms to generalize
patterns and make predictions (BISHOP; NASRABADI, 2006).

The dataset is typically divided into two main subsets: the training set and
the test set. The training set is used to train the machine learning model by
exposing it to labeled examples and allowing it to learn the underlying patterns
and relationships. The test set, on the other hand, is used to evaluate the model’s
performance by assessing its ability to accurately predict the labels of unseen
instances (AGGARWAL et al., 2015).

During the classification process, a ML algorithm employs extracted features
from each dataset instance to create a predictive model or assign class labels. This
involves applying statistical techniques and mathematical algorithms to analyze
data patterns and relationships. Consequently, the model, which represents
the learned knowledge, can classify new, unseen instances based on the learned
knowledge (AGGARWAL et al., 2015).

The classification process involves different steps, such as feature selection or
extraction, model training, and prediction (DOMINGOS, 2012). Feature selec-
tion aims to identify the most relevant and informative features from the dataset
that contribute to the classification task. Model training involves feeding the
selected features and their corresponding labels into the machine learning algo-
rithm, allowing it to adjust its internal parameters and optimize its performance.
Once the model is trained, it can be used to predict the labels of new instances
based on their extracted features, providing valuable insights and facilitating

18

CHAPTER 2. BACKGROUND

decision-making processes.
By leveraging the power of datasets and the classification process, machine

learning enables computers to automatically analyze complex data, detect pat-
terns, and make accurate predictions or classifications, thereby enhancing the
capabilities and performance of computer systems in a wide range of applica-
tions.

2.4.1 Machine Learning Classifiers

In this study, we employed a set of ML classifiers, namely Neural Network,
Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB) and Gaussian
Naive Bayes (GNB) to analyze and classify the dataset. These classifiers are
widely recognized and extensively used in the field of machine learning for
their ability to handle complex datasets and make accurate predictions.

The Neural Network classifier is particularly noteworthy. It is inspired by
the structure and functioning of the human brain and consists of interconnected
nodes organized into layers. These networks excel at capturing intricate patterns
and dependencies in data, making them well-suited for tasks requiring deep
learning and understanding of complex relationships (HASTIE et al., 2009).

The Decision Tree classifier is a popular algorithm that builds a hierarchical
tree-like structure to represent decisions based on feature values. It offers inter-
pretability and transparency in decision-making processes, making it suitable
for understanding the underlying patterns and relationships within the dataset
(HASTIE et al., 2009).

The Random Forest classifier, on the other hand, leverages an ensemble of
decision trees to make predictions. By combining multiple decision trees, it
reduces the risk of overfitting and improves the overall accuracy and robustness
of the classification model. The Random Forest algorithm is known for its ability
to handle high-dimensional data and capture complex interactions between
features (AGGARWAL et al., 2015).

Another powerful classifier utilized in this study is Gradient Boosting. It op-
erates by sequentially adding weak learners to form a strong predictive model.
Gradient Boosting is particularly effective in handling large datasets and has
demonstrated superior performance in various machine learning tasks. It excels
in capturing intricate patterns and generating accurate predictions by minimiz-
ing errors iteratively (HASTIE et al., 2009).

19

CHAPTER 2. BACKGROUND

The GNB classifier is a probabilistic algorithm that assumes feature inde-
pendence and works well with continuous input features following a Gaussian
distribution. It calculates the likelihood of data points belonging to each class
and uses Bayes’ theorem to determine the posterior probability of each class.
The GNB classifier is computationally efficient and has found applications in
text categorization and medical diagnosis tasks (HASTIE et al., 2009).

By incorporating these well-established machine learning classifiers into our
analysis, we aim to leverage their strengths and exploit their unique character-
istics to achieve accurate and reliable classification results. The combination of
Decision Tree, Random Forest, Gaussian NB and Gradient Boosting classifiers
provides a diverse and comprehensive approach to effectively handle the com-
plexities and nuances of our dataset, enabling us to make informed decisions
and draw meaningful insights from the data.

2.4.2 Late-Fusion Classification

Late-fusion classification is a technique in machine learning where the out-
puts or decisions from multiple classifiers are combined at a later stage to make a
final prediction or classification. It involves leveraging the results from different
classifiers to enhance the accuracy and reliability of the classification process.
Instead of relying solely on one classifier, late fusion classification takes advan-
tage of the diverse perspectives and strengths of multiple classifiers (GUNES;
PICCARDI, 2005).

The outputs from these classifiers are merged or integrated to produce a
consolidated prediction. This approach helps to mitigate individual classifier
limitations and biases, leading to improved overall performance in classifica-
tion tasks. Late fusion classification has found applications in various domains,
including computer vision, natural language processing, and anomaly detec-
tion, where it has shown effectiveness in enhancing classification accuracy and
handling complex data patterns.

In the landscape of cybersecurity, where the power of machine learning
unfolds, providing a dynamic shield against evolving threats, another crucial
dimension is the strategic use of honeypots.

20

CHAPTER 2. BACKGROUND

2.4.3 Honeypot

Low interaction honeypots are cybersecurity decoys designed to mimic vul-
nerable systems or services with minimal interaction capabilities (BRINGER;
CHELMECKI; FUJINOKI, 2012). Unlike high-interaction honeypots that emu-
late real systems and engage more deeply with potential attackers, low-interaction
honeypots limit the risk by providing only a surface-level simulation.

Essentially, low-interaction honeypots emulate specific vulnerabilities or ser-
vices without actually running the full application or operating system. They
often respond to known attack patterns or behaviors, providing a controlled en-
vironment for monitoring and investigating malicious activity. These honeypots
are typically less resource-intensive, reducing the likelihood of compromising
the security of the entire network (BRINGER; CHELMECKI; FUJINOKI, 2012).

One of the advantages of low-interaction honeypots is their ease of deploy-
ment and maintenance. Their limited functionality and reduced complexity
make them more straightforward to set up and manage compared to their high-
interaction counterparts. While they might not provide the depth of interaction
seen in high-interaction honeypots, they still serve as valuable tools for early
detection, data collection, and analysis of common attack techniques without
exposing the network to significant risks.

For ICS environments, versatile, low-interaction server-side honeypots are
available. It offers various industrial control protocols, providing the basis for
custom systems that emulate complex infrastructures and create a convincing
environment for potential adversaries. Custom HMI and artificially delayed ser-
vice responses enhance its deceptive capabilities. It can also support access with
production HMIs and can incorporate real hardware, making it a valuable tool
that benefits from collaboration with notable contributors in the field (CONPOT,
2023).

2.5 Chapter Discussion

This chapter has provided a comprehensive theoretical foundation essential
to understanding the context of this research. It encompassed essential concepts
including Industrial Control Systems, the Defense in Depth approach, SDN,
NFV, SFC, and its core components. In addition, a brief view of the field of
Machine Learning was also presented. The next chapter presents the works

21

CHAPTER 2. BACKGROUND

related to this thesis.

22

3
Related Works

This chapter discusses the main related works on two topics: (i) the use of
SFCs to enhance security in systems, applications, and environments, and (ii)
challenges in improving the security level of SFCs. It also covers (iii) existing
IDSs developed for SCADA environments and (iv) the use of machine learning
techniques to enhance IDS security.

3.1 SFC as a Framework to Solve Security Problems

A common issue in the field of security is the Distributed Denial of Service
(DDoS) attack, which aims to render services or systems unavailable. Therefore,
it is crucial to find effective solutions to mitigate such attacks. Four papers were
found that address this problem and utilize the SFC to either detect or mitigate
it.

Bauer, Heseding & Flittner (2017) propose a new architecture to detect and
mitigate DDoS. In addition, the authors used the concepts of SDN, NFV, SFC,
and Python algorithms to implement the architecture in a tool they named
EarlyDrop. It is a new defense mechanism against DDoS attacks where the
network operator can adjust its parameters according to the cost of attacks and
the number of resources required for mitigation.

It implemented a prototype of the EarlyDrop framework, which was tested
under a simulated environment (using Mininet network), Ryu SDN, LXC (Con-
tainers), Python scripts SFC, and Suricata IDS). The results show that the pro-

23

CHAPTER 3. RELATED WORKS

posed architecture and framework can reduce the mitigation costs (when com-
pared to other approaches) and provide the network operator with control over
the number of resources used for the mitigation task.

Similar to the previous work, Shameli-Sendi et al. (2016) proposed a new
architecture and a framework named SDPAP based on distributed security poli-
cies. These policies are considered for the placement (which the authors call
optimal placement) of security functions that let the nodes less overloaded, thus
the entire system becomes more resilient to attacks like DDoS.

In addition, tests have been conducted in a simulated environment of up
to 69,000 nodes, demonstrating acceptable performance and providing a better
and more tailored level of security for data center applications.

The work of Bondan et al. (2017) aims to improve the mitigation of potential
attacks related to time consumption, resources, or other factors by utilizing
collaboration among multiple domains. To achieve this, the authors proposed
a framework that employs SDN and SFC concepts to improve collaboration
among multiple domains. The framework manages and allocates resources for
collaboration.

Collaboration is highly relevant in mitigating DDoS attacks as it requires a
considerable amount of resources. By creating a distributed mitigation envi-
ronment, other high-scale attacks can also be mitigated. Preliminary tests were
conducted in a real environment, demonstrating the viability of this approach
for high-scale attacks.

Another work related to DDoS was done by Alqahtani & Gamble (2015)
and its purpose was to detect this kind of attack. This approach uses four
detection layers: service-level detection, tenant-level detection, application-level
detection, and cloud-level detection. Each layer has different techniques for the
detection of DDoS attacks, in which the first layer sends the result to the second
layer; the second layer sends the result to the third layer, and so on. Finally, the
last layer is responsible for analyzing all results to infer what services are under
attack and what services are applying the attack. Therefore, each application has
a service chain to detect possible DDoS attacks. The authors report successful
detection of DDoS attacks, which presents new possibilities for mitigation.

One of the initial steps taken by attackers is to map target ports. This can be
accomplished through various methods, including TCP scanning, NULL, TCP
connects, SYN, FYN, XMAS, and ACK. While many of these techniques can be
easily detected by security solutions, attackers often employ more advanced

24

CHAPTER 3. RELATED WORKS

techniques such as distributed port scanning and slow port scanning, which
require greater sophistication to detect.

Sanz et al. (2017) proposed an architecture and a prototype capable of detect-
ing various types of port scanning, including distributed (horizontal or vertical)
or slow scans. According to the authors, the prototype was able to detect all
types of port scanning with high accuracy. However, it generated a high number
of false positives in distributed port scanning.

Hu & Yin (2017) discusses the importance of configuring security levels
based on the specificities of each application. Different applications require
different security levels. The authors proposed a framework that utilizes the SFC
technique to provide dynamically customized security and adaptive services for
current applications. The framework was developed using a base application
for managing special vehicles, including ambulances, fire department cars, and
others. The analyzed security features were related to security policies.

The authors claim that their framework can enhance vehicle management
and application security. However, they acknowledge that the new components
added to the framework may introduce security challenges in the SFC environ-
ment and require further analysis.

The main purpose of the work of DePhillips, Katramatos & Bhattacharyya
(2017) was to develop a mechanism for analyzing packet content (on-the-wire
analysis) to enhance security in future high-bandwidth networks. The authors
utilized a SFC environment for communication between two hosts exchanging
messages. Subsequently, they conducted simple tests to analyze the payload of
the packets and identify potentially malicious flows. The task was successfully
completed. The authors report a significant finding regarding the low cost of
wire analysis. However, they acknowledge the need for further testing to assess
scalability.

3.2 SFC in Specific environments

Some works have utilized SFC for specific environments, including indus-
trial, scientific, and federated networks (FYSARAKIS et al., 2017), (PETROULAKIS
et al., 2018), (ANANTHA; RAMAMURTHY, 2017).

The works of Fysarakis et al. (2017) and Petroulakis et al. (2018) were devel-
oped by the same research group and focused on industrial networks in a real

25

CHAPTER 3. RELATED WORKS

wind park.
The main idea was to analyze network traffic and classify it as either legiti-

mate or malicious. To achieve this, we developed an architecture and a reactive
security framework. The framework continuously monitors network traffic and
performs detailed analysis to detect possible attacks.

The analysis is performed through the following security functions: Firewall,
IDS, and DPI, which are chained using SFC. Once the traffic is classified as
legitimate or malicious, legitimate traffic is directed to its destination in the
network after bypassing additional security functions. Malicious traffic, on the
other hand, is sent to a honeynet, which is a network designed to analyze the
behavior of attackers.

A proof of concept was conducted within an operational wind park to eval-
uate the framework’s performance and overhead. The results suggest that the
framework is suitable for operational wind parks, as the additional delay for
critical services was acceptable.

Anantha & Ramamurthy (2017) proposed a new framework called ScienceSDS,
which aims to facilitate the use and chaining of complex security functions for
scientific data sent in SDN environments. These data are susceptible to security
analysis, which can selectively filter and route them according to monitoring
and inspection rules.

The authors claim that their framework provides a secure way to transfer
data between endpoints and dynamically compose services. They implemented
the framework and evaluated its performance, measuring the time required
to configure a Service Function Chain (SFC) and steer traffic through SFCs of
varying sizes.

The results demonstrate that the framework generates minimal overhead,
allows for flexible security service composition using appropriate functions,
and is adaptable to changes in traffic and security attacks.

Some papers use SFC to enhance security in federated environments, as
described in this subsection.

Massonet et al. (2016) proposed to improve security in federated network
environments using NFV and SFC. These techniques evaluate communication
among different networks to determine which are trusted and which are un-
trusted. If an untrusted network is detected, all communication with that net-
work must be encrypted. The authors utilized the Secure Socket Layer (SSL)
tool and its public key algorithms for encryption.

26

CHAPTER 3. RELATED WORKS

The approach relies on a service manifest that specifies the global network se-
curity policy. Through this manifest, the configuration of the security functions
for different clouds of the federation is generated. Tests of the approach were
performed in a simple environment (with five virtual machines) successfully,
however as future works the authors intend to perform tests in more complex
environments.

Another paper published by the same authors (MASSONET et al., 2018)
complements the previous work with the use of global security policies to auto-
mate the deployment and configuration of network security functions through
different cloud federation networks. This is the major contribution of the work
because performing this task manually can take a long time and is error-prone.

The same case study of the previous work was performed using the global
security policies for encrypting the communication among clouds (there are
three clouds: two of them trusted and one untrusted) when the destination
cloud is untrusted, otherwise, the encryption is not necessary.

The authors did not consider the possible existence of local policies (it could
conflict) and local service chains (compatibility) to simplify the environment.
Thus, this work presents a high-level approach to security customization in
federated networks.

3.3 Proposed architectures

This section describes two works proposing theoretical solutions, such as
architectures.

As discussed earlier, Chou et al. (2016) discusses the importance of SDN and
NFV concepts in the implementation of new techniques, such as SFC. As Net-
work security management and information risk control bring challenges to the
existing networks, authors propose new security service on-demand architec-
ture to allow service providers to offer their clients flexible and secure dynamic
services over an SDN network.

The main contribution of the work is to enable service functions to provide
diverse security services for different users, also improve some processes of
manual installations, build rapidly and flexibly security services, and optimize
the use of resources. However, the contribution is limited to the proposed archi-
tecture, i.e., no tests were performed either in simulated or real environments.

27

CHAPTER 3. RELATED WORKS

Zhou et al. (2018) presents a comprehensive analysis of the SCADA sys-
tem architecture is proposed and delineates its fundamental characteristics, and
constructs an attack model. Following the basic DiD model, a refined five-layer
defense architecture is introduced and subjected to simulation with multiple
attack scenarios. Empirical results show that the proposed DiD model signifi-
cantly increases the complexity of attacks and robustly defeats threats, especially
those related to system infiltration and data tampering. This security is impor-
tant, but lacking integration with others is concerning.

3.4 IDS Security Improvements

Some works were developed to improve the security of existing IDSs, such
as Snort, Suricata, and Bro, to be used in SCADA environments. Also, new IDS
approaches were proposed.

Yang, Cheng & Chuah (2019) proposed a network intrusion detection system
making use of machine learning and deep learning. This solution aims to protect
SCADA networks in ICS environments against SCADA-specific attacks, as well
as more general attacks. Convolutional Neural Networks were used to find
attack patterns in SCADA traffic and identify time windows where may be an
attack. Presented results show that the approach used reached a high detection
accuracy and provide the capability to handle emerging threats..

Lai, Zhang & Liu (2019) proposed a solution for the detection of traffic
anomalies in ICS, as well as the classification of attacks. For this purpose, Con-
volutional Neural Networks Convolutional Neural Networks (CNNs) are used
to represent the detection model. According to the authors, the method can
automatically extract characteristics considered critical and provide a precise
classification. For the evaluation of the presented model, real attack data to a
SCADA system were used. The results presented a method related to attack de-
tection and classification in a SCADA environment. A limitation of the solution
is that new attacks or variations are not detected by the model.

Another work that uses the idea of anomaly detection using CNNs is pre-
sented by Zhang et al. (2019). In this work, the authors collected and analyzed
network traffic from control systems in power generation and substation en-
vironments. This way, they proposed a new specific model which can detect
a possible attack in power environments. Results showed that the model is

28

CHAPTER 3. RELATED WORKS

effective and has high accuracy when compared with other CNN works.
Radoglou-Grammatikis et al. (2020) proposed a specific IDS for the Mod-

bus/TCP protocol to detect possible DoS attacks on the environment. For this
purpose, there are two main modules, the first is responsible for capturing traffic
on subnets, and the second is to analyze whether such traffic can be related to
DoS attacks. Machine learning techniques were used to detect attacks, with an
accuracy of 81%. Their model was able to significantly improve the system’s ac-
curacy when compared to traditional techniques. However, the protocol-specific
nature of the scheme may lead to a lack of generalization, thus, unreliability to
be used in production environments.

Similarly, Alem et al. (2023) proposed a more specific intrusion detection
scheme for ICS aiming PLC intrusion detection. The authors used a neural
network that evaluates PLC-related messages. Although the authors assessed
the quality of their scheme in a real industrial environment, the applicability to
other industrial assets was not evaluated.

Mieden & Beltman (2020) developed an IDS to analyze the traffic of a wa-
ter treatment plant that also uses machine learning to detect different types of
attacks. The model with deep neural networks developed was able to iden-
tify malicious behavior within the industrial network with a high success rate,
however, configurations and adaptations are necessary for use in industrial en-
vironments, since the time of traffic increases.

Rajesh & Satyanarayana (2021) focuses on enhancing the security of SCADA
networks, against cyber-attacks through ML techniques. The authors create
a new dataset by capturing real-time SCADA test bed traffic containing both
normal and attack data. Four machine learning algorithms are assessed using
various performance metrics. The study compares the performance of these
algorithms under different scenarios, achieving a ROC value of 99.96%. Such a
IDS could be integrated into the architecture proposed in this thesis.

In general, the approaches proposed in the literature prioritize efforts to
enhance the system’s accuracy. For instance, Ahakonye et al. (2023) proposed a
feature selection technique for ML-based NIDS in SCADA systems. The authors
improve their false-positive rates when proactively selecting their model features
in outdated NIDS datasets. Unfortunately, the applicability of their proposed
model in real-world ICS is overlooked.

Similarly, Ouyang et al. (2021) proposed NIDS implemented using a few-
shot learning scheme for SCADA systems. Their proposed scheme improved

29

CHAPTER 3. RELATED WORKS

detection accuracy compared to other approaches on a SCADA-related dataset.
The impact of motivated attackers on circumventing their proposed model is
not evaluated.

3.5 Chapter Discussion

The works presented and discussed in this chapter focus on improving the
security level of SFC architectures, proposing new security solutions in various
environments, and the new IDS implementation that makes use of Machine
Learning and Deep Learning techniques to improve results. However, among all
the papers presented, none of them presents a solution for SCADA environments
that performs the dynamic classification of flows in an integral way, i.e., a
solution aimed at preventing privilege escalation, thereby preventing attackers
from gaining control over the layers and maintaining the integrity of the DiD,
as vulnerability exploitation often involves privilege escalation techniques.

In this thesis, we propose an architecture based on Defense in Depth with
different security layers. It is important to emphasize that each of the layers has
one or more security tools, as well as different Operating System (OS), aiming
for diversity as a whole in the ICS environment.

Some of the works presented in this chapter, such as IDSs or specific secu-
rity tools for SCADA and ICS environments, possibly can be integrated into our
testbed as a specific security layer. Therefore our proposal, which consists of dif-
ferent security layers, can be an interesting starting point when thinking about
improving the security level in Industrial Environments, and subsequently, se-
lecting the best tools for each specific environment. Finally, Table 3.1 highlights
the most important characteristics of each related work presented in this chapter.

30

CHAPTER 3. RELATED WORKS

Table 3.1: The main characteristics of related works.
A

ut
ho

r

Fo
cu

so
n

IC
S

Re
ac

tiv
e

ar
ch

ite
ct

ur
e

D
ef

en
se

in
D

ep
th

SF
C

to
im

pr
ov

e
se

cu
rit

y

M
L-

ba
se

d
ID

S

IC
S

A
no

m
al

y
de

te
ct

or

O
S

di
ve

rs
ity

IC
S

Fu
nc

tio
na

lp
ro

to
ty

pe

(BAUER; HESEDING; FLIT-
TNER, 2017)

✓ ✓

(SHAMELI-SENDI et al., 2016) ✓ ✓
(BONDAN et al., 2017) ✓
(ALQAHTANI; GAMBLE, 2015) ✓ ✓
(SANZ et al., 2017) ✓ ✓
(HU; YIN, 2017) ✓
(DEPHILLIPS; KATRAMATOS;
BHATTACHARYYA, 2017)

✓

(FYSARAKIS et al., 2017) ✓ ✓ ✓ ✓ ✓
(PETROULAKIS et al., 2018) ✓ ✓ ✓ ✓ ✓
(ANANTHA; RAMAMURTHY,
2017)

✓

(MASSONET et al., 2016) ✓
(MASSONET et al., 2018) ✓
(CHOU et al., 2016) ✓ ✓
(ZHOU et al., 2018) ✓ ✓
(YANG; CHENG; CHUAH,
2019)

✓ ✓ ✓

(LAI; ZHANG; LIU, 2019) ✓ ✓ ✓
(ZHANG et al., 2019) ✓ ✓ ✓
(RADOGLOU-GRAMMATIKIS
et al., 2020)

✓ ✓

(ALEM et al., 2023) ✓ ✓ ✓
(MIEDEN; BELTMAN, 2020) ✓ ✓ ✓
(AHAKONYE et al., 2023) ✓ ✓ ✓
(OUYANG et al., 2021) ✓ ✓ ✓
(RAJESH; SATYANARAYANA,
2021)

✓ ✓ ✓

31

4
ICS Integral Defense in Depth Archi-
tecture

ICS/SCADA systems are often targeted by cyber-attacks and are critical
systems due to the potential for irreparable losses resulting from an attack or
malfunction. These systems also store and transmit sensitive data for companies
and their customers, making them attractive targets for attackers seeking to profit
illegally from potential vulnerabilities. As a result, ensuring the security of these
systems is of utmost importance.

This work presents a Machine Learning-Based Integral Defense in Depth Se-
curity solution for ICS, which is capable of detecting possible attacks on SCADA
systems and performing mitigation actions dynamically and immediately, to en-
sure that attackers do not even know that they are dealing with a set of security
tools embedded within the environment in question.

Since it is not possible to state that a system is 100% secure, regardless of
its nature, and industrial systems have become increasingly attractive targets
to attackers, it is important to note that there are increasingly effective security
mechanisms. Therefore, this thesis proposes an architecture and a security
solution based on Defense in Depth, SFC and Machine Learning to mitigate
possible attacks aimed at exploiting existing vulnerabilities in ICS environments.

In Section 2.2, we discussed the potential susceptibility of DiD environment
to manipulation by attackers aiming to exploit vulnerabilities within the security
tools operating at each layer. For example, attackers could gain control of one
layer and use it as a starting point to elevate their privileges in subsequent layers,

32

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

allowing them to advance through the defense layers.
One of the main goals and defining features of this thesis pertains to the con-

cept of "Integral" (within the context of the Integral DiD Security Model). This
term emphasizes the solution proposed in this work, which hides the layers of
defense. This design prevents attackers from gaining control or exploiting po-
tential vulnerabilities within the secure environment. Even if malicious activity
is detected, the attacker’s data stream is redirected to a controlled environment,
such as a honeypot.

The implementation of an ICS environment with Integral Security DiD mech-
anism has been achieved through the use of SFC. This technique provides
greater control over the flow of data in the environment, allowing for the deter-
mination of which security tools are used to analyze traffic when a flow passes
through the environment (SFP). The path for the flow can be predefined or
dynamically changed based on the analysis performed.

For instance, when network traffic can be directed towards various hosts,
each necessitating different security levels, it becomes possible to configure a
path that traverses more security layers for specific hosts compared to others.
This adaptability allows us to tailor the security level to the specific requirements
of different domains.

The capability to dynamically adjust traffic flows is enabled by a machine
learning model integrated into the SFC flow classifier developed in this study.

4.1 Architecture Overview

In this chapter, a qualitative approach to intrusion detection and prevention
is presented in an architecture that reinforces its robustness through the strategic
implementation of DiD and SFC. Visually represented in Figure 4.2, the archi-
tecture encompasses different security layers that can be customized according
to the environment. At the core of this structure, the SFC Flow Classifier stands
out a component that utilizes ML-based heuristics for flow forwarding in the
SFC flow-classifier to assess traffic and subsequently route it to the security layer
best prepared to discover the nature of the traffic. This dynamic approach em-
powers the architecture to adapt to different types of threats, providing a precise
response to potential attacks.

To complement this approach, an additional component has been inserted

33

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Figure 4.1: Architecture Overview.

within each layer of DiD through the quantitative approach. This component
focuses on identifying anomalies in the Operating System parameters. Thus,
it is possible to detect attacks and attempts to escalate DiD, as attackers often
target the most vulnerable components of the architecture.

In the outlined security architecture, traffic enters in the ICS environment,
and to reach the SCADA system, this traffic is directed through the proposed
architecture. The first element of this architecture is the SFC Flow Classifier,
responsible for directing traffic to three possible security layers. These include
a combination of NIDS + HIDS or DPI + HIDS.

Within these layers, a thorough analysis of traffic is performed to discern
malicious activity. Subsequently, the responses of these two tools are evaluated.
If both agree that the traffic is considered an attack, the system immediately
blocks this traffic, preventing any further compromise. In the case of a consensus
on the normality of the traffic, it is forwarded to the SCADA system. However,
if there is disagreement between the tools, the traffic is redirected to a specific
honeypot.

To address new threats, suspicious traffic is directed to a specialized hon-
eypot as previously mentioned. In this scenario, each incident is meticulously
recorded, categorized, and analyzed. This information is then used for con-
tinuous improvement of the detection model, enhancing the effectiveness of
defense against future attacks. This approach not only increases the system’s

34

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Figure 4.2: Security Solution Overview.

resilience to emerging threats but also contributes to the ongoing evolution of
cybersecurity, ensuring an agile and adaptive response.

4.2 Machine Learning-Based Defense in Depth to
Provide Security in ICS Systems

The following paragraphs present the architecture developed and its gen-
eral idea, as the main goal of this work is to enhance the security level of ICS
environments.

Thus, the security enhancement of this thesis is compounded by an SFC-
based DiD implementation with an intelligent SFC flow classifier. In each DiD
layer (represented as 1, 2, and n in the figure), there is a Security Tool and a
Security Monitoring System, as shown in Figure 4.2. The SFC Flow Classifier
and the Security Monitoring System components are described in the following
sections.

It is crucial to acknowledge that this is a general architecture, and customiza-
tion may be necessary for each specific environment.

We assume that normal and attack traffic is routed through the DiD based
on SFC, that we have shown a split in Figure 4.2 as SFC flows for ease of
understanding. In SFC flows, the blue/dark line (identified as 1, 2, and n)
means that the traffic is sent from the SFC classifier located between A and B
to a DiD layer, i.e., the SFP 1, for example, goes through the security tool 1 and

35

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

SMS 1 and then to the SCADA System or Honeypot.
As mentioned in the section 2.2, each environment utilizing this method

must have a tailored level of security. Consequently, a variety of tools may be
included in a particular layer of defense, depending on their intended use.

For instance, the Security tool can be a conventional Firewall, Intrusion De-
tection System, Deep Packet Inspection, etc. The SMS is an architectural system,
specific to our proposal and after evaluation, the traffic is sent to the SCADA
server (if the traffic is classified by the SMS as normal) or to honeypot (if the traf-
fic is classified by the SMS as an attack). Of course, the SFPs represent various
possibilities, but generally, only one of the paths will take place.

The network security mechanism comprises a conventional firewall, IDS, or
DPI. The SMS is an architectural design specific to this work. After evaluation,
traffic is directed to the SCADA system if it is deemed normal, or to the honeypot
if it is not normal or an attack. The SFC flows represent different possibilities,
but generally, only one will occur.

4.2.1 SFC Flow Classifier

The SFC flow classifier is one of the most important elements of this work, as
it is responsible for dynamically selecting the best path to a packet. This is done
by performing a similarity analysis of previous flows that have been labeled as
attack traffic or normal traffic (i.e., coming from a real SCADA client).

The similarity analysis predicts the probabilities of the input features belong-
ing to each category. Rather than returning a discrete class, the method returns
the probabilities associated with each class. For example, a packet has a 90%
chance of being related to the attack class. Based on this, the SFC flow Classifier
determines the best security tool to evaluate the flow to reach a possible conclu-
sion (i.e., the most specialized tool to analyze it), whether it is actually an attack
or not.

After reviewing the selected security tool, there may still be uncertainty
about the type of flow. Therefore, the SFC Flow Classifier must repeat the same
steps to resolve the issue. This event occurs until the packet is forwarded to the
SCADA server (if it is classified as normal traffic), or to the honeypot (if it is
classified as an attack, or if it cannot be determined that it is normal traffic).

The SFC flow classifier brings to this solution very important features towards
the goal of mitigating the layers attack surface (YOON et al., 2017), because it

36

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Figure 4.3: Security Monitoring System Details.

does not allow an attacker to explore a vulnerability in one layer, control it
and after attacking another layer in DiD, i.e., beyond the security enhancement
imposed by the DiD, a motivated attacker cannot scale up the DiD arrangement
and reach the SCADA system, taking control of each layer individually. This is
particularly important in ICS systems, as IEC 62443 recommends the use of DiD
in these systems.

Therefore, this work employs an intelligent SFC flow classifier that uses a ML-
based engine and selects the best security tool to analyze an attacker’s content,
since a dynamic classifier selection algorithm is applied to route a received
content to a layer, thus the attacker loses control over which layer he will face in
the DiD.

Consequently, the attacker has no control over the number of layers of defense
in the environment or the next layer that will be accessed if they manage to bypass
one. This is because, regardless of the arrangement, each time content reaches
the SFC flow classifier engine, it can be routed to another security tool without
the attacker’s knowledge. Figure 4.3 illustrates this scenario.

Even considering the worst case, where the content is similar to the content
previously seen by the SFC flow classifier engine, and the content travels through
the same flow to reach the security tool, our proposal adds an anomaly host-
based detection engine (i.e., SMS in Figure 4.3), which will reduce the impact of
an attack, as we will explain in the next section.

4.2.2 Security Monitoring System

This module is composed of two components, a Security tools, and Anomaly

host-based detection.
• Security Tools: This module identifies market tools and mechanisms de-

signed to detect known attacks reported in Common Vulnerabilities and

37

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Figure 4.4: Scenario composed of security tools and anomaly host-based detec-
tion.

Exposures (CVE). These tools are commonly used for offensive and de-
fensive strategies by red, blue, and purple teams. The SMS monitors the
log for each content forwarded to this security tool and alerts if a breach
or attack is detected.

• Anomaly host-based detection: This module aims to monitor attacks
using resources available in the operating system. The rationale behind
this is that if a security tool is attacked, it will cause noticeable changes
in processes and system parameters that the ML-based model can detect
at the host level. Thus, assuming the worst case scenario that a security
tool can be individually controlled, in this additional module it will be
noticed by a SMS administrator, but will not be considered as a resource
to be bypassed by an attacker. In this case, we use OS diversity to catch a
possible vulnerability in the same tool but on a different platform (GARCIA
et al., 2014), (BULLE et al., 2020).

To evaluate the combination of the two modules mentioned above, a scenario
was created as shown in Figure 4.4. This architecture allows for modifications,
such as adjusting the number of layers and tools, to ensure adaptability to various
types of ICS environments while maintaining an appropriate level of security.
The tools and implementation details are presented in the following section.

4.3 Prototype and Result Analysis

This section presents the results evaluating the use and feasibility of the tools
used in the development process to build the proposed solution. It also presents
the tools, their specifications, specifications and libraries used in the testbed

38

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

implementation. Two evaluations are conducted, one for performance and one
for security.

The testbed created in this work is a client/server architecture using three
security layers (a number that can be changed at any time, according to the
required security level) and theSFC flow classifier implemented through the
SDN controller.

Several tests were performed to verify that the selected tools and components
could improve the security level of the ICS environment. The entire environment
was built on a machine running Ubuntu Linux OS. All the tools listed below
were installed and configured.

4.3.1 VirtualBox (Host machine)

It is a widely known and open source cross-platform virtualisation software
(VIRTUALBOX, 2023). Our environment consisted of 9 virtual machines, each
of them with different functions (Linux attack, Windows attack, normal traffic,
defense layer 1, defense layer 2, defense layer 3, ScadaBR, ModbusPal, and
Conpot honeypot). This set of virtual machines was created and managed using
Virtualbox software on a Linux machine.

4.3.2 Linux Attack Machine

The Linux attack machine consisted of a set of tools responsible for part of the
Penetration Testings (Pentests) performed. Such a machine used the standard
Kali Linux OS installation (LINUX, 2023).

Kali Linux

Kali Linux is an open source Debian-based Linux distribution designed for
various information security tasks such as Pentest, security research, computer
forensics and reverse engineering (LINUX, 2023).

The attacking machine was updated with manually installed Pentest tools
and is presented below.

Nessus

This is a well-known vulnerability analysis tool used for pentests. In this
work, the essential version was used.

39

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Nessus (NESSUS, 2023) was used to scan for possible vulnerabilities in
ScadaBR (presented later), but it was necessary to create a specific attack profile
to characterise it as an advanced vulnerability scanner. This profile was created
by a professional Pentest analyst.

Nmap

Nmap (Network Mapper) is another tool used for penetration testing (NMAP,
2023). It has several purposes, but in this paper it was only used for port
scanning.

Smod

Smod is a tool composed of several modules with offensive functions to
test for possible vulnerabilities specific to the Modbus protocol (widely used in
ICS/SCADA environments) (SMOD, 2023).

As the smod is an open source tool, it was possible to make some adaptations
necessary for the automation of the Pentests, such as the continuous execution of
Modbus attacks, which in their normal version require several manual requests.

4.3.3 Windows Attack Machine

This machine had the same role as the previous one, but with different attack
tools.

Acunetix

The other attack machine running Windows was updated with security tools
to run Pentest on the testbed environment. Accunetix (ACUNETIX, 2023) was
one of the tools manually installed on such a machine.

The Acunetix is a complete web application security testing solution that can
be used both stand-alone and as part of complex environments (ACUNETIX,
2023). This work was only used as a web vulnerability scanner, focusing on the
SCADA web server.

This tool also required the creation of a specific attack profile. This profile
was also developed by a professional Pentest analyst.

40

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Arachni

Arachni is an open source web application security scanner framework
(ARACHNI, 2023). It was also used to test the SCADA web server. Like Acunetix,
the Arachni tool required some customization for the Cross-Site Script (XSS) and
Structured Query Language (SQL) injection attacks.

4.3.4 SCADA Client

This is the machine responsible for sending normal traffic to the outside
world. For this purpose, a standard Ubuntu Linux was used as the OS. TcpRe-
play software was also added (REPLAY, 2023), which is briefly introduced below.

4.3.5 Security Layer 1 (SMS 1)

This machine also used the standard Ubuntu Linux OS and two security
tools added later, Snort IDS (SNORT, 2023) and SysStat (GODARD, 2015).

Snort

Snort is open source software that can work like IPS or IDS, i.e. to prevent
and/or detect attacks. It is capable of real-time traffic analysis as well as logging
according to preconfigured rulesets.

In this work, Snort was configured using the community ruleset available
from the official Snort IDS website. In addition, Modbus protocol-related set-
tings were made, such as enabling the Modbus preprocessor.

As mentioned earlier, Snort can log possible attacks related to the configured
ruleset. This is a very important aspect of this tool in this work, as any packet
detected as a possible attack is logged for subsequent ML model generation.

SysStat

Sysstat aims to monitor and log various activities that occur within the envi-
ronment. Such a tool is important because, in the event of an attack, there may
be anomalies in the activity of the OS. Thus, SysStat is not a security focused
tool, its usual function is to evaluate performance parameters. However, in an
attack scenario, these parameters can provide valuable security information.

41

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Table 4.1 shows all the metrics analysed by SysStat. Like the Snort IDS,
SysStat also logs possible anomalies in these parameters. In this way, it also
generates a log file for use in building the ML model.

Metric ID Event

rxpck rxpck/s: packet receiving rate (unit: packets/second)
txpck txpck/s: packet transmitting rate (unit: packets/second)
rxkB rxkB/s: data receiving rate (unit: Kbytes/second)
txkB txkB/s: data transmitting rate (unit: Kbytes/second)
rxcmp rxcmp/s: compressed packets receiving rate (unit: Kbytes/sec-

ond)
kbmemfree Amount of free memory available in kilobytes
kbmemused Amount of used memory in kilobytes. This does not take into

account memory used by the kernel itself
memused Percentage of used memory
kbbuffers Amount of memory used as buffers by the kernel in kilobytes
kbcached Amount of memory used to cache data by the kernel in kilobytes
kbcommit Amount of memory in kilobytes needed for the current work-

load. This is an estimate of how much RAM/swap is needed to
guarantee that there never is out of memory

commit Percentage of memory needed for current workload in relation
to the total amount of memory (RAM+swap). This number may
be greater than 100% because the kernel usually overcommits
memory

kbactive Amount of active memory in kilobytes (memory that has been
used more recently and usually not reclaimed unless absolutely
necessary)

kbinact Amount of inactive memory in kilobytes (memory that has been
less recently used. It is more eligible to be reclaimed for other
purposes)

kbdirty Amount of memory in kilobytes waiting to get written back to
the disk

kbanonpg Amount of non-file backed pages in kilobytes mapped into
userspace page tables

42

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

kbslab Amount of memory in kilobytes used by the kernel to cache data
structures for its own use

kbkstack Amount of memory in kilobytes used for kernel stack space
kbpgtbl Amount of memory in kilobytes dedicated to the lowest level of

page tables
kbvmused Amount of memory in kilobytes of used virtual address space
usr Percentage of CPU utilization that occurred while executing at

the user level (application). Note that this field does NOT in-
clude time spent running virtual processors

nice Percentage of CPU utilization that occurred while executing at
the user level with nice priority

iowait Percentage of time that the CPU or CPUs were idle during which
the system had an outstanding disk I/O request

steal Percentage of time spent in involuntary wait by the virtual CPU
or CPUs while the hypervisor was servicing another virtual
processor

guest Percentage of time spent by the CPU or CPUs to run a virtual
processor

pswpin The total number of swap pages the system brought in per sec-
ond

pswpout The total number of swap pages the system brought out per
second

cswch The total number of context switches per second

Table 4.1: SysStat metrics. Adapted from (GODARD, 2015)

4.3.6 Security Layer 2 (SMS 2)

Security layer 2 is similar to security layer 1, as both use a Snort IDS and a
OS parameter analysis tool. However, the OS used in this layer is Windows 10,
which results in a change in the parameter analysis tool as well, i.e. PerfMon
(specific to Windows environments) was used in this layer.

43

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Table 4.2: PerfMon Metrics. Adapted from (PERFMON, 2023)

Physical network interface card activity Idle time (Instantaneous)

Network Interface

Sent packets/s
Received packets/s

Sent Bytes/s
Received Bytes/s

Memory
Available KBytes

% Confirmed Bytes in use
Cache Bytes

Processor % User time

% Hyper-V Processor
% Hyper-V execution time

Context switching/s
Monitor transition cost

Event logs Events/s

Process
Virtual Bytes

Thread number
I/O Data operation/s

System
Context switching/s

Processor queue length
Threads

TCPv4 Active connections
Connection fails

WinNAT ICMP error packets dropped
Sessions/s

Snort Windows

It was used in this layer like security layer 1, but the ruleset is different from
the first, this factor aims to create diversity in the security layers.

PerfMon

As Perfmon is a similar tool to SysStat, its purpose is the same (PERFMON,
2023). However, the set of parameters analysed is different. The table 4.3 shows
this set of parameters.

4.3.7 Security Layer 3

In this layer, the standard Ubuntu Linux OS was installed, and the security
tool here is a DPI implemented based on Iptables.

44

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

IPTables

The IPTtables tool is used to set up, maintain and inspect the tables of IPv4
and IPv6 packet filtering rules in the Linux kernel. Many different tables can
be defined, and each contains some built-in chains and can also contain user-
defined chains (IPTABLES, 2023). This work used a set of rules specifically
designed for use in SCADA systems, more specifically for the Modbus protocol
(NIVETHAN; PAPA, 2016).

The testbed setup involved customization of the DPI implemented based on
Iptables, which can analyse specific aspects of the payload, such as what is the
Modbus function of a given packet. Specific rules have been created to detect
possible attacks targeting the Modbus protocol for operations (presented in the
Smod section of the table 4.3) and, consequently, the SCADA systems that use
it. The standard TCP port used by Modbus is 502. Windows 10 OS was used on
this machine with the installation of the SCADABr system.

4.3.8 SCADABr

SCADABr is a Brazilian open source project that aims to work as a SCADA
web server for the control of industrial environments. It works as the core of an
automation system, monitoring all devices and providing organised access to
their controls and parameters (SCADABR, 2023).

As this is a supervisory system for industrial environments, it was necessary
to create and configure the components to be monitored by the system. Mod-
busPal was chosen as the tool to perform this task. ModbusPal is presented in
the next subsection.

4.3.9 ModbusPal

ModbusPal is a Modbus slave simulator, designed to provide a user-friendly
interface with the capability to replicate complex and realistic ICS environments
(MODBUSPAL, 2023).

In the ModbusPal simulator, three slave devices have been created which
are accessed and monitored via the ScadaBR web server. The communication
between the parties represents the normal traffic of Modbus packets in the
environment.

45

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

4.3.10 Honeypot

A Honeypot is a system that aims to simulate the real operation of a specific
target by providing data, applications, etc., to deceive possible criminals into
thinking they are dealing with the real target, however, this is just a controlled
environment for receiving the attacks. For this purpose, Conpot was used, a
specific Honeypot for SCADA systems, which can simulate simple or more com-
plex environments and distinguishes itself through its low-interaction approach
(CONPOT, 2023).

This design involves minimal engagement with potential adversaries, creat-
ing a cybersecurity decoy that emulates vulnerable ICS systems with surface-
level interaction capabilities. By strategically limiting interactivity, Conpot re-
duces the risks associated with more involved honeypot setups, making it an
effective tool for detecting and analyzing potential threats within ICS environ-
ments.

4.3.11 Floodlight Controller

The Floodlight is an open source controller that uses the OpenFlow protocol
(ATLASSIAN, 2023). This protocol is an open standard maintained by the Open
Network Foundation. Based on OpenFlow, a remote controller (Floodlight) can
modify the behavior of the network through a set of routing instructions. This
allows the Floodlight controller to control ICS network flows through its set of
routing rules.

4.3.12 OpenFlow Switch

An OpenFlow switch is nothing more than a switch that communicates via
the OpenFlow protocol (NETWORKING, 2019) with other components and an
external controller, in this case the Floodlight Controller. It consists of flow tables
and group tables for searching and forwarding. The communication between
the switch and the controller is therefore extremely important, as the controller
manages the switch using the OpenFlow protocol.

This enables the controller to proactively and dynamically add, update and
delete flow entries in the table.

46

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

4.3.13 NTP (Network Time Protocol)

After installing and configuring all the tools described above, a problem
arose with the time synchronisation between the virtual machines present in the
environment. It was therefore necessary to install the Network Time Protocol
(NTP) tool (NTP, 2023) on all machines. Synchronisation was important because
time was a highly relevant feature in log generation and subsequent analysis.

4.3.14 TCPDump

Tcpdump was used to capture all packets in the traffic during a time window
corresponding to the execution time of an attack, which was approximately 2
hours each. All packets captured during the time window were saved to a
capture file Packet Capture (PCAP), which was later processed by Flowtbag to
generate flow statistics based on a set of standard features.

4.3.15 Flowtbag

Flowtbag is a tool that processes traffic files PCAP to extract flow statistics
when running offline (ARNDT, 2023). These statistics were of great importance
as the ML models were partly based on them.

An important aspect related to Flowtbag is that its standard version does
not provide the timestamp of network flows in the output file, a key feature to
find out which of the network flows were classified as an attack by detection
tools such as Snort and DPI. Thus this flag was inserted into the source code,
developed in the GO language, to ensure that the tool can now generate such
data at the end of execution.

4.4 Testbed Scenario

To evaluate this work and run the testbed, the development was divided
into two phases. The first phase was responsible for running the testbed and
generating a dataset of traffic data, including normal flow and attack. The
second stage involved constructing machine learning models using the dataset,
which were subsequently utilized in the flow classifier.

47

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Figure 4.5: The Testbed Created in This Work.

In the first stage, also during the execution of the attack tools and of the
SCADA client for normal traffic, the logs of the security tools (Snort Linux, Snort
Windows, DPI, SysStat, and Perfmon) were recorded. Note that SysStat and
Perfmon are responsible for OS monitoring parameters for host-based anomaly
detection. The logs generated were useful in verifying whether the tools iden-
tified each flow as an attack or normal traffic. The resulting dataset includes
information on whether each security tool detected the flow as an attack or not,
in addition to the final label indicating whether the flow is an attack or not.

The responsibility for managing traffic among virtual machines is the Open-
VSwitch Switch (FOUNDATION, 2023), which makes use of the OpenFlow pro-
tocol to route all traffic to all virtual machines. This procedure was necessary
for all security tools to receive all network traffic, regardless of the destination.

Figure 4.5 shows the whole scheme mentioned above. Note that the "end
product" at this stage is the dataset that is generated and later manipulated to
insert information about the security tools. The Python programming language
and the pandas library were used to manipulate the dataset. The timestamp
recorded in both the PCAP file and the tool logs was the key field to determine
whether a tool detected a flow as an attack.

Table 4.3 presents the attacks executed during the testbed. Various attack
types were used to exploit vulnerabilities in the ScadaBR system, which controls
the ICS environment.

The attacks carried out by the Smod tool targeted ModbusPal since this tool

48

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Table 4.3: Tools and attacks

Security Tool Behavior (Tool) Network Packets

Acunetix (Windows) SQL injection 4k
XSS 6k

Arachni (Windows) Code injection 17k
Nessus (Linux) Advanced scan 35k
Nmap (Linux) Port scan 140k

Smod (Linux)

DoS Write single coils 1k
DoS Write single register 2k

Get function 2k
Read coils 320k

Read holding register 58k
Read input register 150k

Scanner UID 38k
Write single coils 45k

Write single register 296k
TCPReplay Normal (Workload) 5.1B

works with the Modbus/TCP protocol. The ModbusPal mimics three slave
devices that are accessed and monitored by the ScadaBR Web server. Commu-
nication between both represents normal Modbus packet traffic.

Penetration testing attack tools share common features, but each tool has a
specific goal that distinguishes it from others. In addition, they address different
Pentest techniques, which is important, since the security solution developed in
this work must provide the highest possible level of security, regardless of the
technique used by a potential attacker.

4.4.1 Dataset Description

No dataset was found in the literature that could provide all the data needed
to perform this work. Therefore, we have developed a testbed that includes a
variety of realistic behaviors found in SCADA production environments. In this
environment, the SCADA server has been deployed through SCADABR, using a
set of services typically mentioned in the literature (GHOSH; SAMPALLI, 2019).

Furthermore, the constructed testbed is composed of two possible environ-
ments, called normal and attack. The normal behavior is generated by 100
client machines continuously using HTTP, HTTPS, SSH, SMTP and MODBUS

49

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

protocol communication with the SCADA server. The attack environment was
performed using the tools presented in the previous chapter.

Table 4.3 shows the 14 types of attacks performed, as well as the normal
traffic. It also shows the number of inputs generated by Flowtbag in our testbed,
for each of the traffic generated. It is important to note that the execution time
for each of them was 2 hours.

A total of approximately 20GB of data was generated by combining both
normal and attack traffic, with an equal split of 10GB for each. This deliberate
balance in the dataset, comprising both regular network activities and simulated
attack scenarios, is crucial for training machine learning models. It ensures that
the model is exposed to a representative mix of normal and potentially malicious
patterns, enhancing its ability to accurately classify and distinguish between the
two. This balanced dataset forms a robust foundation for the evaluation and
optimization of ICS environments.

By categorizing packets into flows, the Flowtbag tool extracts 40 features to
construct the data schema. These features include metrics such as the number
of packets sent and received, minimum and maximum packet sizes, and several
others. See Table 4.4 for the complete list of features.

The features were selected based on their value for model generation. The
Random Forest algorithm was used for implementation with default parameters.
Features with an information gain greater than 0, determined by a decision tree,
were kept. Some features from the Perfmon and SysStat data were removed.

The files generated by SysStat no longer include the following features: ’tx-
pck’, ’txkB’, ’rxcmp’, ’txcmp’, ’kbvmused’, ’nice’, ’steal’, ’irq’, ’guest’, and ’gnice’.
In Perfmon, the memory features were also removed. Additionally, it is worth
noting that the undersampling technique was applied for data normalization.

4.5 Chapter Discussion

This chapter presents the objectives of each tool necessary for executing the
testbed based on the proposed architecture. It also discusses configurations and
modifications made to the source code of some tools to ensure proper execution
of the environment and simplify certain tasks.

As discussed in subsection 2.2.1, if the security tools used in the environment
have open CVEs, i.e., reported vulnerabilities that have not yet been fixed can

50

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

Table 4.4: The list of Flowtbag features. Adapted from (ARNDT, 2023)

Category Name Description

Identifier srcip Source ip address
Identifier srcport Source port number
Identifier dstip Destination ip address
Identifier dstport Destination port number
Identifier protol Application protocol TCP or UDP
Feature total_fpackets Total packets in the forward direction
Feature total_fvolume Total bytes in the forward direction
Feature total_bpackets Total packets in the backward direction
Feature total_bvolume Total bytes in the backward direction
Feature min_fpktl Size of the smallest forward packet
Feature mean_fpktl Mean size of forward packets
Feature max_fpktl Size of the largest forward packet
Feature std_fpktl Standard deviation from the mean of the forward packets
Feature min_bpktl Size of the smallest backward packet
Feature mean_bpktl Mean size of backward packets
Feature max_bpktl Size of the largest backward packet
Feature std_bpktl Standard deviation from the mean of the backward packets
Feature min_fiat Minimum amount of time between two forward packets
Feature mean_fiat Mean amount of time between two forward packets
Feature max_fiat Maximum amount of time between two forward packets
Feature std_fiat Standard deviation from the mean time between two forward packets
Feature min_biat Minimum amount of time between two backward packets
Feature mean_biat Mean amount of time between two backward packets
Feature max_biat Maximum amount of time between two backward packets
Feature std_biat Standard deviation from the mean time between two backward packets
Feature duration Duration of the flow
Feature min_active Minimum time that the flow was active before idle
Feature mean_active Mean time that the flow was active before idle
Feature max_active Maximum time that the flow was active before idle
Feature std_active Standard deviation from the mean time that the flow was active before idle
Feature min_idle Minimum time a flow was idle before becoming active
Feature mean_idle Mean time a flow was idle before becoming active
Feature max_idle Maximum time a flow was idle before becoming active
Feature std_idle Standard devation from the mean time a flow was idle before turn active
Feature sflow_fpackets Average number of packets in a forward sub flow
Feature sflow_fbytes Average number of bytes in a forward sub flow
Feature sflow_bpackets Average number of packets in a backward sub flow
Feature sflow_bbytes Average number of packets in a backward sub flow
Feature fpsh_cnt Number of PSH flags in forward packets
Feature bpsh_cnt Number of PSH flags in backward packets
Feature furg_cnt Number of URG flags in forward packets
Feature burg_cnt Number URG flags in backward packets
Feature total_fhlen Total bytes used for headers in the forward direction
Feature total_bhlen Total bytes used for headers in the backward direction
Feature dscp First set DSCP field for the flow
Label class Flow class

51

CHAPTER 4. ICS INTEGRAL DEFENSE IN DEPTH ARCHITECTURE

expose the environment. Therefore, the anomaly detector serves as an additional
layer of security, which cooperates with the security tool within each layer. This
makes the proposed architecture more robust and reliable. After configuring
the entire environment, it was possible to thoroughly evaluate the proposed
work. The evaluation will be discussed in the following chapter.

52

5
Evaluation

This thesis was financed in part by the Coordenação de Apereiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

After generating and preparing the normal and attack traffic datasets, this
section evaluates the proposed ML-based Integral DiD to provide security in
ICS environments by addressing three main research questions:

• (RQ1) How does accuracy affect flow forwarding heuristics?

• (RQ2) Can the proposed SFC flow classifier be used to identify which security tool
should be used?

• (RQ3) Does the chaining mechanism increase the confidence level of the security
system?

To answer these research questions, the proposed model and the selected
operating point are used to create a chain to detect attacks. The impact of
this chaining mechanism on the overall confidence of the security system is
evaluated.

The following sections outline the construction of the models used in the
evaluation and describe their performance in creating an attack detection chain.

5.1 Model Building

The models discussed in this section were built using the dataset previously
mentioned, which include 6 different tools (Snort Linux, Snort Windows, Ipta-
bles, SysStat, Perfmon and Normal traffic). The training, testing, and validation

53

CHAPTER 5. EVALUATION

steps were performed with a split of 56% for training, 14% for validation, and
30% for testing. Given that each tool was executed for 2 hours, these values were
selected as the dataset was partitioned based on timestamps. The initial hour
was allocated for training, the first half of the second hour for testing, and the
latter half of the second hour for validation.

Four widely used classification models were evaluated: a Decision Tree,
Random Forest, Gaussian Naive Bayes and Gradient Boosting. These algo-
rithms were selected based on their widespread use and proven performance.
The classifiers were trained using the training and test datasets, and their final
accuracy was reported using the validation dataset. This approach ensures that
the model’s performance is evaluated on data it has not seen before, providing a
more accurate assessment of its ability to generalize to new examples. By using
separate datasets for training, testing, and validation, we can minimize the risk
of overfitting and obtain a reliable estimate of the model’s accuracy. A random
undersampling without a replacement algorithm was applied to the training
data to remove the imbalance among the classes.

Several important metrics were used to evaluate the results presented in this
chapter. Precision measures the number of positive predictions that were made
correctly (True Positives). Recall measures the number of positive cases correctly
predicted out of all the positive cases in the dataset. F1-Score is a measure that
combines both Precision and Recall and can be seen as the harmonic mean of
the two.

5.2 SFC Flow Classifier Models

Figure 5.1 shows the SFC Flow Classifier model overview, comprising two
main modules: Dynamic Selection and Forwarder. The Dynamic Selection
module goal is to adjust the used security mechanisms based on the current OT
network traffic. The model assesses the network traffic behavior and intelligently
selects a subset of security mechanisms that are most suitable for classifying
the incoming network traffic behavior. The main insight is to select which
security tools should be used in a proactive manner to ensure that the system
can maintain its classification reliability. Consequently, the proposed model can
enhance the system’s accuracy, even when facing dynamic attacker behavior.
The forwarder is responsible to send the traffic to the selected layer.

54

CHAPTER 5. EVALUATION

Figure 5.1: SFC Flow Classifier. The proposed scheme proactively selects the
most suitable security mechanisms tailored for the current network traffic.

Regarding the SFC, a MultiLayer Perceptron (MLP) was considered to act as
an engine to dynamically select the best path to a packet based on its character-
istics. Functioning as a classifier, the MLP assesses packet features and makes
dynamic decisions to route it according to established security policies.

The MLP was implemented using the scikit-learn v1.0.2 API, for Python
v3.8.10. Two hidden layers were used, the first consisting of 500 neurons, and
the second with 250 neurons. In addition, the hidden layers rely on the rectified
linear unit (relu) activation function, with a learning rate of 0.001, the adam
optimizer, and 200 epochs. For the output, 4 neurons were used. Three of them
represent a tool that could be used to redirect a packet, while the remaining one
is used to classify whether a packet could be an attack or not.

The following metrics were computed: True Positive (TP) - The number of
correct positive predictions; True Negative (TN) - The number of correct negative
predictions; False Positive (FP) - The number of incorrect positive predictions;
False Negative (FN) - The number of incorrect negative predictions; Accuracy -
The proportion of correct predictions (TP + TN) / (TP + TN + FP + FN); Recall -
The proportion of actual positive predictions that were correctly predicted (TP)
/ (TP + FN); Precision - The proportion of positive predictions that were correct
(TP) / (TP + FP).

55

CHAPTER 5. EVALUATION

Figure 5.2: MLP Models for IPTables DPI, Snort Linux, Snort Windows.

To answer the research questions presented earlier in this chapter, it is neces-
sary to analyze the data from each ML model created. Thus, Figure 5.2 therefore
shows the data relating to the model generated from the data logged by IPTables,
Snort Linux, and Snort Windows.

Of the three models, Snort Windows had the best overall accuracy in detecting
all attacks, and normal traffic, with 98.29% and an F1-Score of 92.29%. This
suggests that the model has an important ability to correctly identify positive
instances and minimize false positives. It was also the best at detecting Acunetix
attacks (SQL Injection and XSS), with 91%. Thus, such a model is the best
candidate to be the first in the chain to analyze a possible low similarity packet,
and for SQL injection and XSS attacks.

The lowest accuracy presented by Snort Windows was 81.89% for the XSS
attack (even being the best at detecting such an attack).

The model generated for Iptables DPI achieved an accuracy of 84.99% and
an F1-score of 91.21%. It only achieved the best accuracy for the specific attacks
for SCADA environments launched by the Smod tool. This was to be expected
since DPI was implemented focusing on such attacks. Therefore, a Modbus
attack should be directed to this model since it has the highest similarity of the
three.

When analyzing the IPTables model, the results suggest that the model per-

56

CHAPTER 5. EVALUATION

forms well, with a high accuracy rate and a balance between precision and recall,
which can be seen from the F1 score.

Snort Linux showed very good accuracies for SQL Injection (99.67%), Port
Scan (99.88%), Code Injection (99.90%), Advanced Scan (99.82%), Get Function
(99.88%) and Normal Traffic (99.78%). The weakness of this model is therefore
the ModBus attacks generated by the Smod tool.

Snort Linux achieved an accuracy of 88.21% and an F1 score of 90.41%. Once
again, the results indicate good performance, with a slightly higher accuracy
rate than the previous model and an F1 score close to that of IPTables.

As shown in Figure 5.2, Snort Linux underperformed Snort Windows overall,
but achieved the best accuracies, all above 99%, for the following traffic types:
Arachni code injection, Nessus Advanced scan, Nmap port scan, and normal
traffic. Thus, such attacks are more easily detected by this model.

It is important to note that, in general, IPTables and both Snorts present a
diversity in their rules, which is an important aspect related to the detection of
different types of attacks. Therefore, they complement each other in creating a
robust security environment. The subsequent paragraphs will delve into specific
aspects related to attacks.

The Acunetix tool was used for two types of attack, XSS and SQL Injec-
tion. First was detected by all three classifiers with an average accuracy of over
75%. The latter, on the other hand, was detected with the highest accuracy by
both Snorts, with more than 99%. For the Iptables classifier, the SQL Injection
accuracy was around 85%.

Port scanning using Nmap was detected over 99% of the time by both Snort
classifiers. In Iptables, the accuracy was over 97%.

The code injection attack performed by the Arachni tool produced different
results according to the different classifiers. The Iptables accuracy was 61,2%,
Snort Linux 89,6%, and Snort Windows 99,9%.

For the advanced scanning attack performed by the Nessus tool, again both
Snorts showed an interesting accuracy of over 91,6%, while Iptables had a result
of around 68,5%.

The remaining attacks were all generated by the Smod tool (specific for
Modbus environments). Of these, the DoS Write Single Coils attack was best
detected by the Snort Linux classifier (98,4%). The other classifiers had an
accuracy of around 86%.

For the DoS Write Single Register attack, the Iptables and Snort Windows

57

CHAPTER 5. EVALUATION

classifiers yielded the best results compared to Snort Linux, with an accuracy
rate of approximately 95.8%.

For the attacks on Read Coils, Read Holding Register, and Read Input Reg-
ister, both Iptables and Snort Windows achieved accuracies of over 96% in most
cases. However, Snort Linux performed poorly, with accuracies close to 50%.

For the Write Single Coils attack, the Snort Linux classifier presented the best
accuracy (98.4%), while the Iptables and Snort Windows classifiers had around
86%.

The Write Single Register attack was better detected by Iptables and Snort
Windows classifiers, with 95.8% of accuracy, and Snort Linux with 85.9%.

For the Get Func attack, Snort Linux performed well, with a 99.8% of accuracy,
while the others presented around 88.5%.

The UID Scanner attack was better detected by the Snort Linux classifier,
with 98,6% of accuracy. The others had an accuracy of around 88,5%.

And for detecting normal traffic, all three classifiers performed well, with
Snort Linux and Snort Windows standing out with a 99.8% accuracy.

Thus, it is evident that the classifiers generated by these tools complement
each other in detecting various types of attacks. If one classifier is not effective
in detecting a particular type of attack, another classifier can compensate for this
deficiency.

The Iptables classifier demonstrates noteworthy performance in detecting
Smod tool attacks due to its rules being specifically designed for this purpose.
In contrast, the results of Snorts varied depending on the type of attack and tool
used. It is worth noting that Snort Linux had poor accuracy in detecting specific
Modbus attacks using the Smod tool.

The Receiver Operator Characteristic (ROC) curve for the MLP containing
IPTables, Snort Windows, and Snort Linux is presented in Figure 5.3.

5.3 Anomaly Host-based Detection Models

The current module comprises the detection of anomalies in a host using
ML. The features considered for the current step were obtained from SysStat
and PerfMon logs. For each feature set, a RF was used as the classifier, using
100 decision trees as the base estimators, with the gini as the split criterion.

Four different classifiers were used to build the anomaly host based model,

58

CHAPTER 5. EVALUATION

Figure 5.3: ROC curve for the MLP created based on IPTables, Snort Windows,
and Snort Linux.

DT, GNB, RF, and GB. In this way, different results were achieved according to
each classifier.

5.3.1 SysStat Model

Figure 5.4 presents the results of the model created for SysStat according to
the four classifiers mentioned above. When analyzing the results obtained in
Linux (SysStat), the four classifiers presented most of the accuracies between
90% and 100%.

The Decision Tree only performed worse on attacks related to the Acunetix
tool, with 85.7% accuracy. For the others, the result was between 93.7% and
100%.

The Gaussian NB classifier had 100% accuracy in all attacks except normal
traffic, which had an accuracy of 0.

Random Forest showed great results with approximately 100% accuracy for
all attacks, except for the Acunetix tool, with 91.22%, and normal traffic with
75.95%.

Gradient Boosting had similar accuracy to Random Forest, but the result for
Acunetix was 84.18% and normal traffic was better than the previous one, with

59

CHAPTER 5. EVALUATION

Figure 5.4: Models for SysStat.

Figure 5.5: ROC curve for the SysStat model with four classifiers.

97.18%.
The ROC curve for the SysStat model is presented in Figure 5.5 below. Note

that only one of the classifiers had a low AUC, the GNB (50%).

60

CHAPTER 5. EVALUATION

Figure 5.6: Models for PerfMon.

5.3.2 Permon Model

Figure 5.6 presents the results obtained in the Perfmon (Windows) model
using the same four classifiers used in the SysStat models.

Analyzing the results obtained in the Perfmon model, the four classifiers
presented most of the accuracies between 88,6% and 98%. Decision Tree varied
between 89,1% and 92,6% of accuracy.

Gaussian NB did not perform well in detecting attacks generated by Arachni,
which had an accuracy of only 57.3%. The others ranged from 88.6% to 93.7%.

The Random Forest classifier performed the best result in normal traffic, with
an accuracy of 98.08%.

Gradient Boosting presented an accuracy between 89,8% and 91,7% for all
types of traffic.

The memory-related features were removed from the PerfMon model gener-
ation as they did not provide any information gain. Thus, we can conclude that
the analysis of memory features was not relevant for the attacks performed in
this work.

Figure 5.7 shows the ROC curve for the Perfmon model. The evaluated
classifiers demonstrated similar accuracy rates based on their OS feature sets.

61

CHAPTER 5. EVALUATION

Figure 5.7: ROC curve for the PerfMon model with four classifiers.

5.4 Security Monitoring System Discussion

Among the three models generated for Iptables DPI, Snort Linux, and Snort
Windows, the latter had the best average accuracy in detecting all attacks, and
normal traffic, with 92.75%. In addition, Snort Windows was also the best at
detecting Acunetix attacks (SQL Injection and XSS), with 91%. Thus, such a
model is the best candidate to be the first in the chain to analyze a possible low
similarity packet. The same can be said for SQL injection and XSS attacks.

As for Snort Linux, it performed very well against almost all types of attacks.
Only the SCADA-specific attacks, which were sent by the Smod tool showed
low accuracy rates. For the Arachni code injection attacks, the Nessus Advanced
scan, the Nmap Port scan, and the normal traffic, the model built for Snort Linux
showed the best accuracy rates, all above 99%. This means that such attacks are
more easily detected by this model.

The model generated for Iptables DPI achieved only the best accuracy for the
specific attacks for SCADA environments launched by the Smod tool. This was
to be expected since DPI was implemented focusing on such attacks. Therefore,
a Modbus attack should be directed to this model as it has the highest similarity
of the three.

62

CHAPTER 5. EVALUATION

Regarding the host-based anomaly models of SysStat (Linux) and Perfmon
(Windows), the former obtained the best overall accuracy among all classifiers
used, with 92.7%. It is also important to note that the classifier with the best
average accuracy for SysStat was Gradient Boosting, with 96.7%. The Decision
Tree classifier had a similar result, with 96.5%.

Among the classifiers created for Perfmon, the Random Forest had the best
accuracy, approximately 97%.

In response to RQ1, the impact of accuracy on flow forwarding heuristics is
crucial in optimizing resource allocation in the security environment to achieve
the highest level of confidence. This process involves carefully selecting the most
appropriate tools to analyze each packet, taking into account their respective ca-
pabilities. Thus, the heuristics efficiently guide traffic, ensuring that the selected
tools can accurately determine whether a packet has malicious origins. This
approach greatly enhances effectiveness in the security environment, supported
by well-founded and precise decision-making.

5.5 Intelligent Defense in Depth

The generated Machine Learning models were inserted within to mitigate
possible attacks. Also, they were inserted into the Floodlight Controller to
classify and target new flows in real-time.

At this stage, following the analysis flow of Algorithm 1, the Floodlight
Controller, responsible for dynamically selecting classifiers, achieved optimal
routing for each packet that entered the Ethernet interface and passed through
the SFC flow classifier, which uses similarity calculation.. The pseudocode that
implements the classifiers decision is shown in Algorithm 1.

To address RQ2, we analyze the previously presented algorithm that per-
forms a similarity analysis between the input packet and those used in model
training. This allows the packet to be sent to the most appropriate tools for
accurate classification. The Floodlight controller implements the flow classifica-
tion algorithm, which identifies the best tool or chain of tools to detect potential
attacks or normal traffic.

The determination of the path a packet should take is customizable. This
task can be divided into three steps: similarity calculation, classification level 1
(tools), and classification level 2 (anomaly).

63

CHAPTER 5. EVALUATION

Algorithm 1 Intelligent Defense in Depth (Prototype)
1: Initial setup

2: procedure getPacket(packet)
3: 𝑓 𝑙𝑜𝑤𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ← similarity(𝑝𝑎𝑐𝑘𝑒𝑡)
4: if 𝑓 𝑙𝑜𝑤𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 = SnortWindows then

5: send(𝑝𝑎𝑐𝑘𝑒𝑡;
6: 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑊 ← SnortWindowsClassifier(𝑝𝑎𝑐𝑘𝑒𝑡);
7: 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑊 ← SnortWindowsAnomaly(𝑝𝑎𝑐𝑘𝑒𝑡))
8: if (𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑊 = ’Attack’) ∧ (𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑊 = ’Attack’) then

9: block(packet)
10: else if (𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑊 = ’Normal’) ∧ (𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑊 = ’Normal’)

then

11: send(𝑝𝑎𝑐𝑘𝑒𝑡, 𝑆𝐶𝐴𝐷𝐴𝐵𝑟)
12: end if

13: else if 𝑓 𝑙𝑜𝑤𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 = SnortLinux then

14: send(𝑝𝑎𝑐𝑘𝑒𝑡;
15: 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝐿← SnortLinuxClassifier(𝑝𝑎𝑐𝑘𝑒𝑡);
16: 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝐿← SnortLinuxAnomaly(𝑝𝑎𝑐𝑘𝑒𝑡))
17: if (𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝐿 = ’Attack’) ∧ (𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝐿 = ’Attack’) then

18: block(packet)
19: else if (𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝐿 = ’Normal’) ∧ (𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝐿 = ’Normal’)

then

20: send(𝑝𝑎𝑐𝑘𝑒𝑡, 𝑆𝐶𝐴𝐷𝐴𝐵𝑟)
21: end if

22: else if 𝑓 𝑙𝑜𝑤𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 = DPItool then

23: send(𝑝𝑎𝑐𝑘𝑒𝑡;
24: 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑃𝐼 ← DPI(𝑝𝑎𝑐𝑘𝑒𝑡);
25: 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝐷𝑃𝐼 ← DPIAnomaly(𝑝𝑎𝑐𝑘𝑒𝑡))
26: if 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑃𝐼 = ’Attack’ then

27: block(packet)
28: else if 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑃𝐼 = ’Normal’ then

29: send(𝑝𝑎𝑐𝑘𝑒𝑡, 𝑆𝐶𝐴𝐷𝐴𝐵𝑟)
30: else

31: send(𝑝𝑎𝑐𝑘𝑒𝑡, ℎ𝑜𝑛𝑒𝑦𝑝𝑜𝑡)
32: end if

33: end if

34: end procedure

64

CHAPTER 5. EVALUATION

Table 5.1: Whole System Accuracy.

Classifier Flow label Accuracy F1-score Blocked Scada Honeypot

DT Win 92.08% 94.42% 1.19% 70.23% 28.57%
Linux 97.10% 98.52% 1.19% 70.23% 28.57%

GNB Win 83.50% 87.37% 1.19% 70.23% 28.57%
Linux 97.17% 98.55% 1.19% 70.23% 28.57%

GB Win 92.08% 94.69% 1.21% 70.22% 28.57%
Linux 97.89% 98.93% 1.21% 70.22% 28.57%

RF Win 87.13% 91.79% 1.23% 70.20% 28.57%
Linux 99.56% 99.78% 1.23% 70.20% 28.57%

The initial task is to calculate similarity using the predict_proba function
from the scikit-learn library. This function utilizes the results obtained from
the previously presented DPI and Snorts models to select the most suitable
candidate for analyzing the newly arrived package.

After the calculation is complete, the packet is sent to either Snort or DPI and
then to either SysStat or Perfmon for analysis. These tools determine whether
the packet is normal traffic or a possible attack.

During the third step, the level 2 classifier identifies the packet’s destination
as either SCADABr, the Honeypot, or blocking it.

The algorithm 1 presents all the possibilities according to the previously
chosen path for sending the packet and analysis by one of the tools, as well as
the OS anomaly detector SMS.

Currently, a conservative approach is employed. If the indicated tool and
the anomaly detector do not agree that the traffic is normal, it may be sent to the
Honeypot or blocked if both indicate that the traffic is an attack. This approach
can be tailored to various scenarios and environments.

The algorithm 1 was implemented using the four ML algorithms previously
used in SysStat and PerfMon. Thus, Table 5.1 presents the results obtained. It
is important to note that all algorithms used a threshold of 0.05 as the operating
point. These values were obtained from the F1-Score metric.

This table displays accuracy values ranging from 83% to 99.5%. These values
indicate whether the packet was labeled as an attack or normal by the developed
SFP system.

For example, when analyzing the DT algorithm for the Linux OS, we have
an accuracy of 97.1% and F1-score of 98.5%. This means that after the two
classifications performed, packets were correctly sent to SCADABr, Honeypot,

65

CHAPTER 5. EVALUATION

or correctly blocked correctly 97.1% of the time. Such a statement can be made
with 95% confidence since the operating point is 0.05.

In general, the four classifiers obtained satisfactory results, with Random
Forest standing out on Linux OS, with 99.5% accuracy. For the Windows OS,
the best results were obtained from DT and GB, with 92.07%.

When analyzing the F1-score, we have values always above 90%, which
indicates that very bad cases in the scenario of this work, such as high rates
of false negatives is low. Thus, the solution presented here becomes a relevant
solution for ICS environments, with high accuracy and low overhead.

Since DPI is responsible for performing a comprehensive analysis of network
packets, its computational requirements are typically higher than other tools.
As a result, DPI operates independently in this capacity and is therefore not
included in the Table 5.1.

When analyzing the last three columns of Table 5.1, it can be observed that,
across all classifiers, approximately 1.2% of attacks were blocked, 70.2% were
forwarded to SCADA, and 28.6% were directed to the Honeypot. The traffic sent
to the latter is one of the major contributions of this study, as if the problem
were approached using traditional DiD techniques, some of the attacks within
the 28.6% sent to the Honeypot could be treated as normal traffic and sent to
SCADABr. The total number of packets used in this test was 832,258.

Figure 5.8 presents the ROC curve for the Linux OS. The evaluated classifiers
demonstrated similar accuracy rates based on their OS feature sets, with an AUC
of 1.00 for all classifiers.

For the Windows OS, the ROC curve is shown in Figure 5.9. Of the four
classifiers shown in the figure, DT has the lowest AUC at 0.80 compared to the
others.

Regarding the models generated for Windows and Linux paths, the choice of
the best classifier to be used can be made by analyzing the average classification
time for each of them. The execution times of DT, RF, and GB ranged from 0.002
to 0.005 seconds. Only GNB had a higher time of 0.0237 and 0.0249.

This characteristic is very important (VIEGAS et al., 2016), because a high
latency time can make a good security solution unusable for ICS.

Of all the classifiers, the GNB is the slowest of all. This is a disadvantage
when compared to the others, which have a similar time for both OS (in seconds).
The table 5.2 presents the elapsed time of all classifiers.

Finally, we show that the security level of an ICS environment can be in-

66

CHAPTER 5. EVALUATION

Figure 5.8: ROC curve for the Linux OS model with four classifiers.

Figure 5.9: ROC curve for the Windows OS model with four classifiers.

creased by using ML models, together with the concatenation of security func-
tions. This combination can optimize DiD routing techniques and specific se-
curity tools by utilizing packet classification and dynamic routing through the
SFC flows. Therefore, we can answer RQ3 based on the results presented here.

67

CHAPTER 5. EVALUATION

Table 5.2: Elapsed Time (in seconds) for all Classifiers in Linux and Windows.

Classifier Flow label

Average

(seconds)

Std Deviation

(seconds)

DT Windows 0.0003 0.0005
Linux 0.0003 0.0005

GNB Windows 0.0249 0.0081
Linux 0.0237 0.0054

RF Windows 0.0002 0.0005
Linux 0.0002 0.0005

GB Windows 0.0004 0.0005
Linux 0.0005 0.0008

5.6 Limitations

The use of different types of attacks in relation to those used to create the
ML models in the classifiers may be considered a limitation. This is because
the detection of new attack categories may have lower accuracy than the values
presented here. However, the use of Honeypot helps to mitigate this problem
by collecting data to retrain the models and continuously improve the security
environment.

It is important to note that the flow classifier plays a central role in this work.
If it is compromised, the entire system can be seriously impacted. One potential
solution to this issue is to implement a clustered solution, which would allow
for the replication of key components, including the classifier used in this work.

The honeypot’s collected data requires processing for model insertion and
updates. However, labeling a large amount of data is a limitation. However,
labeling a large amount of data is a limitation. To address this, a semi-supervised
learning technique could be employed with expert support.

Finally, determining when machine learning models are outdated can be a
critical aspect of this work. Therefore, it is possible to establish a policy for
updating models based on specific intervals. Additionally, other policies can be
developed and put into practice.

5.7 Chapter Discussion

Relevant results have been obtained regarding the detection of various types
of attacks against ICS/SCADA environments. It has been demonstrated that

68

CHAPTER 5. EVALUATION

a well-designed set of attack detection tools can effectively mitigate potential
attacks with high accuracy, in conjunction with the ML models developed in
this study.

Diversity among security tools is crucial to creating a defense environment
with multiple layers, each with its own specialty. This approach contributes to
an intelligent and modular defense system that minimizes potential bottlenecks.

The latency generated by a security solution must be minimal for it to be
feasible to implement in an ICS environment. Therefore, this work highlights
the feasibility of implementing the presented models, including dynamic clas-
sifier selection. The relevance of this aspect is demonstrated by the previously
presented classification times.

When a packet is sent to the honeypot, it indicates that even after being
classified by specific machine learning models, it is impossible to unambiguously
determine whether the analyzed packet is an attack or normal traffic. This means
that the classification decision is unknown.

To enhance the security level of the proposal during model retraining, it is
crucial to analyze the behavior of potential new attacks and traffic when clas-
sification decisions are unknown. This analysis will help update the generated
models and improve overall security as traffic changes over time.

The use of classifiers, particularly in the heuristics of the flow classifier, is
crucial in limiting an attacker’s ability to compromise Defense in Depth (DiD)
or take control of this security structure. This approach increases complexity by
requiring the intruder to not only overcome each individual layer of the DiD but
also to understand and neutralize the automatic decisions of the flow classifier.
This strengthens the integrity and resilience of the security architecture.

69

6
Conclusion and Future Works

This work introduces a novel architecture and implementation of DiD within
an ICS environment, with a focus on intelligent selection of security tools based
on incoming packets. The approach involves dynamic traffic routing within
the flow classifier, ensuring that each access attempt can be directed through
different SFC flows. Consequently, this intricacy in flow routing complicates an
attacker’s ability to control DiD, adding an additional layer of defense against
potential intrusion.

Another aspect of this work is its flexibility in terms of the security tools
used in our prototype. Our architecture allows for easy addition or removal of
security tools, making it adaptable to changing needs.

Anomaly host-based detection has been integrated with security tools to
evaluate packets in DiD flows. Both classifiers determine whether the packet
content is an attack or normal, improving the reliability of traffic classification
for ICS by 28.6% compared to the current state of the art in DiD, which does not
incorporate an anomaly detector based on OS parameters.

From the results obtained, we can state that the solution proposed in this
work is a significant alternative to the standard DiD technique, which is state of
the art, as it presents improvements concerning the best security function chain
to detect a possible attack, and has diversity among the tools, working with an
anomaly detection system based on OS monitoring. In addition, the machine
learning models created and used in this work present better accuracy when
compared to off-the-shelf security tools.

In addition to the aforementioned advantages, the use of a honeypot is

70

CHAPTER 6. CONCLUSION AND FUTURE WORKS

another significant contribution. The honeypot receives inconclusive (unknown)
classifier decisions and serves as a controlled environment for collecting attack
data to adjust the ML models created here in the future.

Regarding the overhead introduced by machine learning models, it is impor-
tant to note that the additional cost is low. This makes the solution scalable and
viable in ICS, where time is often highly relevant.

6.1 Future Works

As future work, a more significant number of security tools and, conse-
quently, different sets of flows can be tested. A more comprehensive range of
Pentests can be applied to obtain more of the results previously presented with
new types of attacks and consequently can improve this work. Furthermore,
testing this work in a real ICS scenario would be very interesting as possible
new features to be implemented.

This work suggests potential research areas for future studies, including
optimizing flow forwarding heuristics, enhancing the flow classifier through
advanced machine learning methods, and exploring the architecture’s interop-
erability with existing security standards. Additionally, improving anomaly
detection in industrial environments is a relevant area for subsequent research.
Advanced metrics and practical considerations regarding security policies and
compliance should be included to offer significant contributions to the ongoing
advancement of industrial cybersecurity.

71

References

ACUNETIX. Acunetix. 2023. Disponível em: <https://www.acunetix.com>.

AGGARWAL, C. C. et al. Data mining: the textbook. [S.l.]: Springer, 2015. v. 1.

AHAKONYE, L. A. C.; NWAKANMA, C. I.; LEE, J.-M.; KIM, D.-S. Agnostic ch-
dt technique for scada network high-dimensional data-aware intrusion detection
system. IEEE Internet of Things Journal, v. 10, n. 12, p. 10344–10356, 2023.

ALANAZI, M.; MAHMOOD, A.; CHOWDHURY, M. J. M. Scada vulnerabilities
and attacks: A review of the state-of-the-art and open issues. Computers &
Security, Elsevier, p. 103028, 2022.

ALEM, S.; ESPES, D.; NANA, L.; MARTIN, E.; De Lamotte, F. A novel bi-
anomaly-based intrusion detection system approach for industry 4.0. Future
Generation Computer Systems, v. 145, p. 267–283, 2023. ISSN 0167-739X.

ALLIANCE, N. 5g white paper. Next generation mobile networks, white paper, v. 1,
n. 2015, 2015.

ALQAHTANI, S.; GAMBLE, R. F. Ddos attacks in service clouds. In: IEEE. 2015
48th Hawaii International Conference on System Sciences. [S.l.], 2015. p. 5331–5340.

ANANTHA, D. N.; RAMAMURTHY, B. Sciencesds: A novel software defined
security framework for large-scale data-intensive science. In: Proceedings of the
ACM International Workshop on Security in Software Defined Networks & Network
Function Virtualization. [S.l.: s.n.], 2017. p. 13–18.

ARACHNI. Arachni. 2023. Disponível em: <https://www.arachni-scanner.
com>.

ARNDT, D. Flowtbag. 2023. Disponível em: <https://github.com/DanielArndt/
flowtbag>.

ATLASSIAN. Floodlight Controller. 2023. Disponível em: <https://floodlight.
atlassian.net/wiki/spaces/floodlightcontroller/overview>.

AUTOMATION, I. What is Scada. 2018. Disponível em: <https://
inductiveautomation.com/resources/article/what-is-scada>.

72

https://www.acunetix.com
https://www.arachni-scanner.com
https://www.arachni-scanner.com
https://github.com/DanielArndt/flowtbag
https://github.com/DanielArndt/flowtbag
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://inductiveautomation.com/resources/article/what-is-scada
https://inductiveautomation.com/resources/article/what-is-scada

REFERENCES

BAUER, R.; HESEDING, H.; FLITTNER, M. Earlydrop: A trade-off driven ddos
defense mechanism for software-defined infrastructures. In: IEEE. 2017 IEEE
42nd Conference on Local Computer Networks (LCN). [S.l.], 2017. p. 207–210.

BISHOP, C. M.; NASRABADI, N. M. Pattern recognition and machine learning. [S.l.]:
Springer, 2006. v. 4.

BONDAN, L.; WAUTERS, T.; VOLCKAERT, B.; TURCK, F. D.; GRANVILLE,
L. Z. A framework for sfc integrity in nfv environments. In: SPRINGER INTER-
NATIONAL PUBLISHING. Security of Networks and Services in an All-Connected
World: 11th IFIP WG 6.6 International Conference on Autonomous Infrastructure,
Management, and Security, AIMS 2017, Zurich, Switzerland, July 10-13, 2017, Pro-
ceedings 11. [S.l.], 2017. p. 179–184.

BRINGER, M. L.; CHELMECKI, C. A.; FUJINOKI, H. A survey: Recent advances
and future trends in honeypot research. International Journal of Computer Network
and Information Security, Modern Education and Computer Science Press, v. 4,
n. 10, p. 63, 2012.

BULLE, B. B.; SANTIN, A. O.; VIEGAS, E. K.; SANTOS, R. R. dos. A host-based
intrusion detection model based on os diversity for scada. In: IEEE. IECON 2020
The 46th annual conference of the IEEE industrial electronics society. [S.l.], 2020. p.
691–696.

CERT, I. Attack statistics. 2023. Disponível em: <https://ics-cert.kaspersky.com/
statistics>.

CHEN, X.; ZHANG, D.; WANG, X.; ZHU, K.; ZHOU, H. P4sc: Towards high-
performance service function chain implementation on the p4-capable device.
In: IEEE. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). [S.l.], 2019. p. 1–9.

CHOU, L.-D.; TSENG, C.-W.; HUANG, Y.-K.; CHEN, K.-C.; OU, T.-F.; YEN, C.-K.
A security service on-demand architecture in sdn. In: IEEE. 2016 International
Conference on Information and Communication Technology Convergence (ICTC). [S.l.],
2016. p. 287–291.

COMMISSION, I. E. et al. Iec 62443-4-1: 2018: Security for industrial automation
and control systems-part 4-1: Secure product development lifecycle require-
ments. International Electrotechnical Commission, 2018.

CONPOT. Conpot Honeypot. 2023. Disponível em: <https://hub.docker.com/r/
honeynet/conpot>.

DANEELS, A.; SALTER, W. What is scada? 1999.

DEPHILLIPS, M.; KATRAMATOS, D.; BHATTACHARYYA, S. Making a case
for high-bandwidth monitoring-a use case for analysis on the wire. In: IEEE.
2017 New York Scientific Data Summit (NYSDS). [S.l.], 2017. p. 1–6.

73

https://ics-cert.kaspersky.com/statistics
https://ics-cert.kaspersky.com/statistics
https://hub.docker.com/r/honeynet/conpot
https://hub.docker.com/r/honeynet/conpot

REFERENCES

DOMINGOS, P. A few useful things to know about machine learning. Commu-
nications of the ACM, ACM New York, NY, USA, v. 55, n. 10, p. 78–87, 2012.

FOUNDATION, L. OpenVSwitch. 2023. Disponível em: <https://www.
openvswitch.org>.

FOUNDATION, O. N. OpenFlow Switch Specification. 2015. Disponível
em: <https://opennetworking.org/wp-content/uploads/2014/10/
openflow-switch-v1.5.1.pdf>.

FYSARAKIS, K.; PETROULAKIS, N. E.; ROOS, A.; ABBASI, K.; VIZARRETA, P.;
PETROPOULOS, G.; SAKIC, E.; SPANOUDAKIS, G.; ASKOXYLAKIS, I. A reac-
tive security framework for operational wind parks using service function chain-
ing. In: IEEE. 2017 IEEE Symposium on Computers and Communications (ISCC).
[S.l.], 2017. p. 663–668.

GARCIA, M.; BESSANI, A.; GASHI, I.; NEVES, N.; OBELHEIRO, R. Analy-
sis of operating system diversity for intrusion tolerance. Software: Practice and
Experience, Wiley Online Library, v. 44, n. 6, p. 735–770, 2014.

GERRITZ, C. Depth is a Flawed Cyber Strategy. 2018.
Disponível em: <https://www.cyberdefensemagazine.com/
special-report-defense-in-depth-is-a-flawed-cyber-strategy/>.

GHEORGHE, A.; MASERA, M.; WEĲNEN, M.; VRIES, L. D. Critical infrastruc-
tures at risk. Securing the European electric power system, Springer, 2006.

GHOSH, S.; SAMPALLI, S. A survey of security in scada networks: Current
issues and future challenges. IEEE Access, IEEE, v. 7, p. 135812–135831, 2019.

GODARD, S. SYSSTAT utilities home page. 2015. Disponível em: <http://
sebastien.godard.pagesperso-orange.fr>.

GROUP, N. B. D. P. W. et al. NIST Special Publication 1500-1-NIST Big Data Inter-
operability Framework: Volume 1, Definitions. NIST Spec Publ [Internet]. 2015; 1: 32.
2018.

GUNES, H.; PICCARDI, M. Affect recognition from face and body: early fusion
vs. late fusion. In: IEEE. 2005 IEEE international conference on systems, man and
cybernetics. [S.l.], 2005. v. 4, p. 3437–3443.

HALPERN, J.; PIGNATARO, C. RFC 7665: service function chaining (sfc) architec-
ture. [S.l.]: RFC Editor, 2015.

HAN, B.; GOPALAKRISHNAN, V.; JI, L.; LEE, S. Network function virtualiza-
tion: Challenges and opportunities for innovations. IEEE communications maga-
zine, IEEE, v. 53, n. 2, p. 90–97, 2015.

74

https://www.openvswitch.org
https://www.openvswitch.org
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.cyberdefensemagazine.com/special-report-defense-in-depth-is-a-flawed-cyber-strategy/
https://www.cyberdefensemagazine.com/special-report-defense-in-depth-is-a-flawed-cyber-strategy/
http://sebastien.godard.pagesperso-orange.fr
http://sebastien.godard.pagesperso-orange.fr

REFERENCES

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. H.; FRIEDMAN, J. H. The elements
of statistical learning: data mining, inference, and prediction. [S.l.]: Springer, 2009.
v. 2.

HEMSLEY, K. E.; FISHER, E. et al. History of industrial control system cyber inci-
dents. [S.l.], 2018.

HU, Z.; YIN, Y. A framework for security on demand. In: IEEE. 2017 13th
International Wireless Communications and Mobile Computing Conference (IWCMC).
[S.l.], 2017. p. 378–383.

IPTABLES. IPTables. 2023. Disponível em: <https://www.netfilter.org/
projects/iptables/index.html>.

KASPERSKY. Threat landscape for industrial automation sys-
tems. Statistics for H2 2022. 2023. Disponível em: <https:
//ics-cert.kaspersky.com/publications/reports/2023/03/06/
threat-landscape-for-industrial-automation-systems-statistics-for-h2-2022/>.

KAYAN, H.; NUNES, M.; RANA, O.; BURNAP, P.; PERERA, C. Cybersecurity
of industrial cyber-physical systems: a review. ACM Computing Surveys (CSUR),
ACM New York, NY, v. 54, n. 11s, p. 1–35, 2022.

LAI, Y.; ZHANG, J.; LIU, Z. Industrial anomaly detection and attack classification
method based on convolutional neural network. Security and Communication
Networks, Hindawi Limited, v. 2019, p. 1–11, 2019.

LANGNER, R. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security &
Privacy, IEEE, v. 9, n. 3, p. 49–51, 2011.

LINUX, K. Kali Linux. 2023. Disponível em: <https://www.kali.org>.

LIU, C.-G. A novel moving target defense scheme with physical unclonable
functions-based authentication. IEEE Access, IEEE, v. 10, p. 23051–23062, 2022.

LYONS, B. Applying a holistic defense-in-depth approach to the cloud. 2011.

MASSONET, P.; DUPONT, S.; MICHOT, A.; LEVIN, A.; VILLARI, M. Enforce-
ment of global security policies in federated cloud networks with virtual network
functions. In: IEEE. 2016 IEEE 15th International Symposium on Network Computing
and Applications (NCA). [S.l.], 2016. p. 81–84.

MASSONET, P.; DUPONT, S.; MICHOT, A.; LEVIN, A.; VILLARI, M. A motivat-
ing case study for coordinating deployment of security vnf in federated cloud
networks. In: SPRINGER. Advances in Service-Oriented and Cloud Computing:
Workshops of ESOCC 2016, Vienna, Austria, September 5–7, 2016, Revised Selected
Papers 5. [S.l.], 2018. p. 34–42.

75

https://www.netfilter.org/projects/iptables/index.html
https://www.netfilter.org/projects/iptables/index.html
https://ics-cert.kaspersky.com/publications/reports/2023/03/06/threat-landscape-for-industrial-automation-systems-statistics-for-h2-2022/
https://ics-cert.kaspersky.com/publications/reports/2023/03/06/threat-landscape-for-industrial-automation-systems-statistics-for-h2-2022/
https://ics-cert.kaspersky.com/publications/reports/2023/03/06/threat-landscape-for-industrial-automation-systems-statistics-for-h2-2022/
https://www.kali.org

REFERENCES

MELL, P.; SHOOK, J.; HARANG, R. Measuring and improving the effectiveness
of defense-in-depth postures. In: Proceedings of the 2nd Annual Industrial Control
System Security Workshop. [S.l.: s.n.], 2016. p. 15–22.

MIEDEN, P.; BELTMAN, R. Network anomaly detection in modbus tcp industrial
control systems. Tech. Rep., University of Amsterdam, 2020.

MILLER, B.; ROWE, D. A survey scada of and critical infrastructure incidents.
In: Proceedings of the 1st Annual conference on Research in information technology.
[S.l.: s.n.], 2012. p. 51–56.

MODBUSPAL. ModbusPal. 2023. Disponível em: <https://github.com/zeelos/
ModbusPal>.

MÖLLER, N.; HANSSON, S. O.; HOLMBERG, J.-E.; ROLLENHAGEN, C. Hand-
book of safety principles. [S.l.]: John Wiley & Sons, 2018. v. 9.

NESSUS. Nessus. 2023. Disponível em: <https://pt-br.tenable.com/products/
nessus>.

NETWORKING, O. Software Defined Networking. 2019. Disponível em: <https:
//www.opennetworking.org/sdn-definition>.

NGUYEN, V.-G.; BRUNSTROM, A.; GRINNEMO, K.-J.; TAHERI, J. Sdn/nfv-
based mobile packet core network architectures: A survey. IEEE Communications
Surveys & Tutorials, IEEE, v. 19, n. 3, p. 1567–1602, 2017.

NIVETHAN, J.; PAPA, M. On the use of open-source firewalls in ics/scada
systems. Information Security Journal: A Global Perspective, Taylor & Francis, v. 25,
n. 1-3, p. 83–93, 2016.

NMAP. Nmap. 2023. Disponível em: <https://nmap.org/book/man.html>.

NTP. NTP.br. 2023. Disponível em: <https://ntp.br>.

OUYANG, Y.; LI, B.; KONG, Q.; SONG, H.; LI, T. Fs-ids: A novel few-shot
learning based intrusion detection system for scada networks. In: ICC 2021 -
IEEE International Conference on Communications. [S.l.: s.n.], 2021. p. 1–6.

PERFMON. Perfmon. 2023. Disponível em: <https://learn.microsoft.com/
pt-br/windows-server/administration/windows-commands/perfmon>.

PETROULAKIS, N. E.; FYSARAKIS, K.; ASKOXYLAKIS, I.; SPANOUDAKIS,
G. Reactive security for sdn/nfv-enabled industrial networks leveraging ser-
vice function chaining. Transactions on Emerging Telecommunications Technologies,
Wiley Online Library, v. 29, n. 7, p. e3269, 2018.

76

https://github.com/zeelos/ModbusPal
https://github.com/zeelos/ModbusPal
https://pt-br.tenable.com/products/nessus
https://pt-br.tenable.com/products/nessus
https://www.opennetworking.org/sdn-definition
https://www.opennetworking.org/sdn-definition
https://nmap.org/book/man.html
https://ntp.br
https://learn.microsoft.com/pt-br/windows-server/administration/windows-commands/perfmon
https://learn.microsoft.com/pt-br/windows-server/administration/windows-commands/perfmon

REFERENCES

RADOGLOU-GRAMMATIKIS, P.; SINIOSOGLOU, I.; LIATIFIS, T.; KOUROU-
NIADIS, A.; ROMPOLOS, K.; SARIGIANNIDIS, P. Implementation and detec-
tion of modbus cyberattacks. In: IEEE. 2020 9th International Conference on Modern
Circuits and Systems Technologies (MOCAST). [S.l.], 2020. p. 1–4.

RAJESH, L.; SATYANARAYANA, P. Evaluation of machine learning algorithms
for detection of malicious traffic in scada network. Journal of Electrical Engineering
& Technology, Springer, p. 1–16, 2021.

REPLAY, T. TCP Replay. 2023. Disponível em: <https://tcpreplay.appneta.com>.

RUNNELS, G. M. Implementing defense in depth at the university level. GSEC
Practical, n. 1.4, 2002.

SANZ, I. J.; LOPEZ, M. A.; MATTOS, D. M. F.; DUARTE, O. C. M. B. A
cooperation-aware virtual network function for proactive detection of dis-
tributed port scanning. In: IEEE. 2017 1st Cyber Security in Networking Conference
(CSNet). [S.l.], 2017. p. 1–8.

SCADABR. ScadaBR. 2023. Disponível em: <https://www.scadabr.com.br>.

SECURITY, D. of H. Recommended Practice: Improving Industrial Control
System Cybersecurity with Defense-in-Depth Strategies. 2016. Disponível em:
<https://www.cisa.gov/uscert/sites/default/files/recommended_practices/
NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf>.

SHAMELI-SENDI, A.; JARRAYA, Y.; POURZANDI, M.; CHERIET, M. Efficient
provisioning of security service function chaining using network security de-
fense patterns. IEEE Transactions on Services Computing, IEEE, v. 12, n. 4, p.
534–549, 2016.

SHENG, C.; YAO, Y.; LI, W.; YANG, W.; LIU, Y. Unknown attack traffic classifi-
cation in scada network using heuristic clustering technique. IEEE Transactions
on Network and Service Management, IEEE, 2023.

SMOD. Smod. 2023. Disponível em: <https://github.com/theralfbrown/
smod-1>.

SNORT. Snort IDS. 2023. Disponível em: <https://www.snort.org>.

THOMAS, G. Introduction to the modbus protocol. The Extension, v. 9, n. 4,
p. 1–4, 2008.

TRENDMICRO. Industrial Control System. 2023. Disponível em: <https://www.
trendmicro.com/vinfo/us/security/definition/industrial-control-system>.

VIEGAS, E.; SANTIN, A. O.; FRANCA, A.; JASINSKI, R.; PEDRONI, V. A.;
OLIVEIRA, L. S. Towards an energy-efficient anomaly-based intrusion detection
engine for embedded systems. IEEE Transactions on Computers, IEEE, v. 66, n. 1,
p. 163–177, 2016.

77

https://tcpreplay.appneta.com
https://www.scadabr.com.br
https://www.cisa.gov/uscert/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf
https://www.cisa.gov/uscert/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf
https://github.com/theralfbrown/smod-1
https://github.com/theralfbrown/smod-1
https://www.snort.org
https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system
https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system

REFERENCES

VIRTUALBOX. Virtualbox. 2023. Disponível em: <https://www.virtualbox.
org>.

YANG, H.; CHENG, L.; CHUAH, M. C. Deep-learning-based network intrusion
detection for scada systems. In: IEEE. 2019 IEEE Conference on Communications
and Network Security (CNS). [S.l.], 2019. p. 1–7.

YOON, C.; LEE, S.; KANG, H.; PARK, T.; SHIN, S.; YEGNESWARAN, V.; POR-
RAS, P.; GU, G. Flow wars: Systemizing the attack surface and defenses in
software-defined networks. IEEE/ACM Transactions on Networking, IEEE, v. 25,
n. 6, p. 3514–3530, 2017.

ZHANG, L.; LV, Z.; ZHANG, X.; CHEN, C.; LI, N.; LI, Y.; WANG, W. A novel
approach for traffic anomaly detection in power distributed control system and
substation system. In: SPRINGER. Network and System Security: 13th International
Conference, NSS 2019, Sapporo, Japan, December 15–18, 2019, Proceedings 13. [S.l.],
2019. p. 408–417.

ZHOU, X.; XU, Z.; WANG, L.; CHEN, K.; CHEN, C.; ZHANG, W. Construc-
tion and evaluation of defense-in-depth architecture in scada system. In: EDP
SCIENCES. MATEC Web of Conferences. [S.l.], 2018. v. 173, p. 01012.

78

https://www.virtualbox.org
https://www.virtualbox.org

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Contextualization
	Motivation
	Hypothesis
	Objectives
	Specific Objectives

	Contributions
	Publications
	Organization

	Background
	Industrial Control Systems
	Defense in Depth
	Defense in Depth Security Problems

	Service Function Chaining and its components
	Software Defined Network
	Network Function Virtualization
	Service Function Chaining
	Advantages of Using SFC

	Machine Learning
	Machine Learning Classifiers
	Late-Fusion Classification
	Honeypot

	Chapter Discussion

	Related Works
	SFC as a Framework to Solve Security Problems
	SFC in Specific environments
	Proposed architectures
	IDS Security Improvements
	Chapter Discussion

	ICS Integral Defense in Depth Architecture
	Architecture Overview
	Machine Learning-Based Defense in Depth to Provide Security in ICS Systems
	SFC Flow Classifier
	Security Monitoring System

	Prototype and Result Analysis
	VirtualBox (Host machine)
	Linux Attack Machine
	Windows Attack Machine
	SCADA Client
	Security Layer 1 (SMS 1)
	Security Layer 2 (SMS 2)
	Security Layer 3
	SCADABr
	ModbusPal
	Honeypot
	Floodlight Controller
	OpenFlow Switch
	NTP (Network Time Protocol)
	TCPDump
	Flowtbag

	Testbed Scenario
	Dataset Description

	Chapter Discussion

	Evaluation
	Model Building
	SFC Flow Classifier Models
	Anomaly Host-based Detection Models
	SysStat Model
	Permon Model

	Security Monitoring System Discussion
	Intelligent Defense in Depth
	Limitations
	Chapter Discussion

	Conclusion and Future Works
	Future Works

	References

